Kay Cepera, Johannes Weyer, Julius Konrad

VERTRAUEN IN MOBILE APPLIKATIONEN

EINE EMPIRISCHE STUDIE

Soziologisches Arbeitspapier Nr. 58/2019

Herausgeber
Prof. em. Dr. H. Hirsch-Kreinsen
Prof. Dr. J. Weyer
apl. Prof. Dr. M. Wilkesmann
Vertrauen in mobile Applikationen
Eine empirische Studie

Kay Cepera, Johannes Weyer, Julius Konrad

Soziologisches Arbeitspapier Nr. 58
(Mai 2019)

TU Dortmund

ISSN 1612-5355
Editors

Prof. em. Dr. Hartmut Hirsch-Kreinsen
vormals Lehrstuhl Wirtschafts- und Industriesoziologie
Hartmut.Hirsch-Kreinsen@tu-dortmund.de

Prof. Dr. Johannes Weyer
Fachgebiet Techniksoziologie
Johannes.Weyer@tu-dortmund.de

apl. Prof. Dr. Maximiliane Wilkesmann
Institut für Soziologie (ISO)
Maximiliane.Wilkesmann@tu-dortmund.de

Technische Universität Dortmund
Fakultät Wirtschaftswissenschaften
D-44221 Dortmund

Ansprechpartnerin:
Britta Tusk, e-mail: is.wiwi@tu-dortmund.de

Die in diesem Arbeitspapier präsentierten Forschungsergebnisse wurden im Rahmen des vom Bundesministerium für Bildung und Forschung geförderten Projektes „ABIDA“ unter dem Förderkennzeichen 01IS15016D erarbeitet.
Inhalt

1 Einleitung ... 1

2 Mobile Apps .. 5
 2.1 Apps allgemein ... 5
 2.2 Gesundheits-Apps ... 6
 Verhaltensänderung durch Apps ... 7
 Fazit ... 10
 2.3 Navigations-Apps ... 11
 Verhaltensänderung durch Apps ... 12
 Fazit ... 15

3 Theoretische Rahmung ... 16
 3.1 Modellierung der Bereitschaft zur Verhaltensänderung 16
 Theory of Reasoned Action .. 16
 Theory of Planned Behaviour ... 17
 Prospect Theory .. 17
 3.2 Das TAM-Modell ... 18
 Kritische Würdigung .. 22
 3.3 Erweiterung des TAM um den Faktor Vertrauen 24
 Dimensionen des Vertrauens ... 24
 Vertrauen in Online-Shops ... 26
 Das erweiterte Forschungsmodell ... 27
 3.4 Bereitschaft zur Verhaltensänderung .. 28
 3.5 Fazit .. 29

4 Externe Faktoren des TAM-Modells .. 31
 4.1 Erfahrungen mit Apps .. 31
 4.2 Technikaffinität .. 32
 4.3 Kontrollüberzeugungen .. 33
 4.4 Kompetenzerwartungen .. 34
 4.5 Soziales Umfeld .. 35
 4.6 Datenschutzsensibilität ... 36
 4.7 Skalen, Hypothesen und das erweiterte Forschungsmodell........................ 37

5 Deskriptive Analyse .. 39
 5.1 Design der Studie und Pretests ... 39
 5.2 Das Sample ... 39
 5.3 Die Konstrukte des erweiterten TAM-Modells ... 40
 Bereitschaft zur Verhaltensänderung .. 40
 Wahrgenommene Nutzerfreundlichkeit (PEOU) .. 44
 Wahrgenommener Nutzen (PU) .. 45
 Vertrauen in Apps ... 46
 Korrelationsanalysen .. 48
 5.4 Die externen Faktoren .. 49
 Erfahrungen mit Apps .. 49
Abbildungsverzeichnis

Abbildung 1: Anteil der Smartphone-Nutzer*innen in Deutschland in den Jahren 2012 bis 2017 ... 1

Abbildung 2: Vertrauen im Big-Data-Prozess (Weyer et al. 2018, S. 133) 2

Abbildung 5: Theory of Reasoned Action (in Anlehnung an Fishbein/Ajzen 1975) ... 17

Abbildung 6: Theory of Planned Behaviour (Ajzen 1991) 17

Abbildung 7: Prospect Theory (Tversky und Kahneman 1981) 18

Abbildung 8: Das Technologie-Akzeptanz-Modell (TAM) (Davis et al. 1989, S. 985) ... 19

Abbildung 9: TAM 2 (Venkatesh und Davis 2000, S. 188) 20

Abbildung 10: TAM 3 (Quelle: Venkatesh und Bala 2008, S. 276) 21

Abbildung 11: Modell soziologischer Erklärung (Quelle: Esser 1993, S. 93) 23

Abbildung 12: Kombination von TAM und MSE (eigene Darstellung) 23

Abbildung 13: Dimensionen des Vertrauens (McKnight und Chervany 2001, S. 33) ... 25

Abbildung 14: Das erweiterte TAM von Gefen et al. (2003, S. 53) 27

Abbildung 15: Erweitertes TAM-Modell (eigene Darstellung) 30

Abbildung 16: Das erweiterte Forschungsmodell mit externen Faktoren (eigene Darstellung) ... 38

Abbildung 17: Navigations-Szenario 1 (vor der Fahrt) 40

Abbildung 18: Navigations-Szenario 2 (während der Fahrt) 41

Abbildung 19: Gesundheits-Szenario (Sport) .. 41
Tabellenverzeichnis

Tabelle 1: Präventionsebenen (Scherenberg und Kramer 2013, S. 116) 7
Tabelle 2: Studien zu Verhaltensänderungen durch Gesundheits-Apps (eigene Darstellung) ... 9
Tabelle 3: Studien zu Verhaltensänderungen durch Navigations-Apps (eigene Darstellung) ... 13
Tabelle 4: Skalen zu den Konstrukten „Wahrgenommene Nutzerfreundlichkeit“ und „Wahrgenommener Nutzen“ (eigene Darstellung) .. 22
Tabelle 5: Skalen zum Konstrukt Vertrauen (eigene Darstellung) 28
Tabelle 7: Skalen zum Konstrukt Technikaffinität (eigene Darstellung) 33
Tabelle 8: Skalen zum Konstrukt Wahrgenommene Kontrolle (eigene Darstellung) ... 34
Tabelle 9: Übersicht über etablierte Skalen zum Konstrukt Eigene Kompetenz (eigene Darstellung) ... 35
Tabelle 10: Skalen zu den Subkonstrukten soziales Umfeld und politisches Interesse (eigene Darstellung) .. 36
Tabelle 11: Skalen zum Subkonstrukt Vertrauen in Datenschutz (eigene Darstellung) ... 37
Tabelle 12: Konstrukte und Skalen (eigene Darstellung, in Klammern Items nach Weglassung)... 37
Tabelle 13: Übersicht der Hypothesen (eigene Darstellung) .. 38
Tabelle 14: Bereitschaft zur Verhaltensänderung (in Prozent – Werte über dem Durchschnitt sind fett gesetzt) ... 43
Tabelle 15: Faktorladungen und Reliabilitätsmaße aller Konstrukte 45
Tabelle 16: Korrelationsanalyse .. 48
Tabelle 17: Korrelationen der vier Kernfaktoren des erweiterten TAM-Modells 49
Tabelle 18: Nutzung von Apps nach Typ .. 50
Tabelle 19: Nutzung von Apps nach Anzahl .. 50
Tabelle 20: Negative Erfahrungen mit Apps (Angaben in Prozent, Werte über dem Durchschnitt sind fett gesetzt) ... 52
Tabelle 21: Korrelationen in Bezug auf das Vertrauen (Ausschnitt aus der Gesamt-Matrix) ... 53
Tabelle 22: Technikaffinität (additiver Index) in Prozent .. 54
Tabelle 23: Korrelationen in Bezug auf das Vertrauen (Ausschnitt der Gesamt-Matrix) .. 54
Tabelle 24: Interne Kontrollüberzeugungen (additiver Index) in Prozent 55
Tabelle 25: Externe Kontrollüberzeugungen (additiver Index) in Prozent 55
Tabelle 26: Korrelationen in Bezug auf Vertrauen (Ausschnitt der Gesamt-Matrix) .. 55
Tabelle 27: Kompetenzerwartungen (additiver Index) in Prozent 56
Tabelle 28: Korrelationen in Bezug auf Vertrauen (Ausschnitt der Gesamt-Matrix) .. 56
Tabelle 29: Reputation und soziales Umfeld in Prozent 57
Tabelle 30: Korrelationen in Bezug auf Vertrauen ... 58
Tabelle 31: Datenschutzsensibilität (additiver Index) in Prozent 59
Tabelle 32: Korrelationen in Bezug auf Vertrauen (Ausschnitt der Gesamt-Matrix) .. 59
Tabelle 33: Vergleich der Gütekriterien der einzelnen Schätzungen 68
Tabelle 34: Abschließender Überblick über die Hypothesen 70
Abstract

Abstract

The use of apps requires user’s trust concerning the security of their data and the usefulness of the app. While apps can be used as a means for real-time governance, there is both sociological and governmental interest in gathering insights about the characteristics of human-app-interaction. We model this interaction and find empirical evidence, using a large-scale survey, that trust is a key factor in this interaction concerning user’s willingness to change behavior following app-induced recommendations.
1 Einleitung

Das Smartphone ist allgegenwärtig und aus unserem – privaten wie beruflichen – Alltag nicht mehr wegzudenken. So ist der Anteil der Nutzer*innen von Smartphones in Deutschland zwischen den Jahren 2012 bis 2017 von 36% auf 81% der Bevölkerung ab 14 Jahren gestiegen, wie in Abbildung 1 zu sehen ist.

![Abbildung 1: Anteil der Smartphone-Nutzer*innen in Deutschland in den Jahren 2012 bis 2017](image)

Ein großer Teil der Erfolgsgeschichte des Smartphones basiert auf den mobilen Applikationen (Apps), die es zu einem Universalwerkzeug machen, zum „Schweizer Taschenmesser für das Internet“. Nahezu jede beliebige Transaktion lässt sich über Smartphone-Apps ausführen – von der Fahrplanauskunft bis zur Pizzabestellung, vom Aktienhandel bis zum mobilen Auftragsmanagement in Logistik-Unternehmen.

Smartphone-Apps sind somit in mehrfacher Hinsicht zu einem wichtigen Bestandteil des Big-Data-Prozesses geworden, den wir in unserem Basis-Gutachten folgendermaßen charakterisiert haben (vgl. Abbildung 2).
Big Data ist ein Prozess, den man analytisch in drei Schritten zerlegen kann:

1. Die Generierung von Daten durch Menschen und Maschinen, die eine Selbstdiagnose und Selbstortung (oftmals mithilfe von Apps) vornehmen;
2. die Auswertung dieser Daten durch Datenanalysten – zumeist mithilfe hoch-automatisierter operierender Algorithmen – und, darauf basierend, die Generierung von Lagebildern und Prognosen;
3. die Steuerung komplexer sozio-technischer Systeme in Echtzeit, und zwar mittels Handlungsempfehlungen, welche die Apps an ihre Nutzer*innen adressieren.

Der gesamte Prozess ist in einen institutionalen Rahmen eingebettet und wird zudem als eine sich wiederholende Sequenz verstanden, bei der der Output zum Input für den nächsten Zyklus wird.

Ein zentrales Ergebnis unseres Basis-Gutachtens bestand darin, dass Vertrauen im Big-Data-Prozess eine wichtige, geradezu unentbehrliche Rolle spielt. Vertrauen ist ein komplexes Konzept, dessen Kern die Bereitschaft eines Akteurs ist, sich in Situationen der Unsicherheit, in denen er die Folgen seines Handelns nur unvollständig überblickt, auf jemanden oder etwas zu verlassen und damit ein Risiko einzugehen (vgl. Nooteboom 2002, S. 45ff.)

Unter Vertrauen verstehen wir also die Zuschreibung, dass ein anderer (sei es eine menschliche Person, eine Institution oder ein technisches Gerät) in Situationen der Unsicherheit, in denen man auf Kontrolle verzichtet und dem Anderen die Kontrolle (bzw. Teile davon) überträgt, die eigenen Erwartungen nicht enttäuscht.

Dieses Vertrauen spielt an mehreren Punkten des Big-Data-Prozesses eine wichtige Rolle (vgl. ausführlich Weyer et al. 2018):

- Vertrauen in Datenanalysten (Schritt 1a): Die Nutzer von Apps müssen ein Mindestmaß an Vertrauen haben, damit sie ihre Daten bereitwillig zur Verfügung stellen. Die Reputation des Datenverarbeiters oder vertrauensbildende...
Maßnahmen (offene Kommunikation, Transparenz) können dazu beitragen, dieses Vertrauen zu erzeugen und langfristig zu erhalten.

- **Vertrauen in Nutzer (Schritt 1b):** Die Datenaufbereitungen müssen darauf vertrauen, dass die Nutzer verlässliche Daten übermitteln und diese nicht mutwillig verfälschen (z.B. indem sie ihr Fitness-Armband in der Waschmaschine schleudern (vgl. Kappler und Vormbusch 2014; Sanger et al.; Dorschel 2015).

- **Vor allem bei der Interpretation der Ergebnisse müssen die Datenanalysten darauf vertrauen, dass die gewählten Verfahren plausible Ergebnisse liefern.**

- **Vertrauen in Empfehlungen (Schritt 3):** Die Nutzer von Big-Data-Anwendungen müssen den Empfehlungen vertrauen, die beispielsweise ihre Navigations-App generiert, auch wenn es ihnen kaum möglich ist nachzuvollziehen, wie diese zustande gekommen sind (vgl. Tchernykh et al. 2015; Weyer et al. 2015).

- **Vertrauen in den institutionellen Rahmen:** Wie auch auf traditionellen Märkten benötigen alle Akteure des Big-Data-Prozesses Vertrauen in den institutionellen Rahmen (von Recht und Politik), der das Handeln der Beteiligten legitimiert und im Zweifelsfall sanktioniert.

In soziologischer Hinsicht ist Vertrauen also ein unentbehrlicher Bestandteil des Big-Data-Prozesses. Ohne Vertrauen – in den genannten Dimensionen – wird die Verarbeitung großer Datenmengen aus heterogenen Quellen in hoher Geschwindigkeit nicht funktionieren. Wenn die Beteiligten einander misstrauen, werden die Datenquellen versiegern, die Analysen unbrauchbare Ergebnisse liefern und die Empfehlungen nicht genutzt.

Insofern ist es wichtig herauszufinden, was die Faktoren sind, die unser Vertrauen in Apps beeinflussen, und wie groß unsere Bereitschaft ist, den Handlungsempfehlungen von Apps zu folgen und unser Verhalten entsprechend zu verändern. Diesen Zweck verfolgt die vorliegende Studie; sie verwendet dabei die Methode einer großzahligen Befragung, deren Daten mit statistischen Verfahren aufbereitet und ausgewertet werden. Wir haben uns entschieden, uns auf drei Typen von Apps zu konzentrieren (vgl. Kap. 2), die weit verbreitet sind und in hohem Maße darauf abzielen, das Verhalten ihrer Nutzer*innen zu beeinflussen:

- Gesundheits- bzw. Fitness-Apps sammeln Vitaldaten (teils automatisch, teils durch manuelle Eingabe) und bieten ihren Nutzer*innen Hilfestellung bei der Bewältigung alltäglicher Probleme (Gewichtsreduktion, Fitness- oder Gesundheitsmonitoring, Erreichung von Trainingszielen etc.).
- Navigations-Apps sammeln Mobilitätsdaten und versorgen ihre Nutzer*innen mit Informationen zur aktuellen sowie Prognosen der künftigen Verkehrslage, verbunden mit der Bereitstellung von Alternativ-Optionen (Wahl anderer Verkehrsmittel bzw. alternativer Routen).
- Wetter-Apps liefern eine Vorausschau der künftigen Wetterentwicklung und ermöglichen ihren Nutzer*innen, sich rechtzeitig auf prognostizierte Wetterereignisse (Regen, Unwetter etc.) einzustellen.

Dabei verfolgen wir im Wesentlichen zwei Fragestellungen:

2 Mobile Apps

2.1 Apps allgemein

2.2 Gesundheits-Apps

Mit der rasanten Verbreitung des Smartphones hat sich auch die Zahl der gesundheitsbezogenen Apps rapide erhöht, die Themen wie Ernährung und Sport, aber auch Diabetes oder Depressionen adressieren (Luxton et al. 2011, 505; Franklin et al. 2016, S. 544). Waren es im November 2010 noch ungefähr 8.000 Apps, die in weitem Sinne dem Gesundheitsbereich zugeordnet werden konnten, so waren es 2015 bereits mehr als 103.000 Apps – mit steigender Tendenz (Strotbaum und Reiß 2017, S. 359).

Gesundheits-Apps bilden einen Teilbereich eines neuen Felds, das in der Literatur mit den Begriffen „eHealth“ oder „mHealth“ umschrieben wird, also die „durch Mobilgeräte elektronisch unterstützte Gesundheits-Versorgung“, die eng mit der Telemedizin verbunden ist (Albrecht 2016, S. 14). Vieles ist hier noch im Fluss: „Die mobile Gesundheit [...] ist ein neues, dynamisches und expandierendes Feld der Gesundheitsversorgung, das in kurzen Zyklen Innovationen hervorbringt und sich stetig wandelt.“ (ebd.)

<table>
<thead>
<tr>
<th>Zielgruppe</th>
<th>(Präventions-)Bereiche</th>
<th>Beispiele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laien/Gesunde</td>
<td>Gesundheitsförderung: Apps zur Stärkung der gesundheitlichen Ressourcen & Schutzfaktoren für Gesundheit</td>
<td>Fit & Relax, Yoga Poses</td>
</tr>
<tr>
<td>Laien/Gesunde</td>
<td>Primärprävention: Apps für Gesunde ohne gesundheitliche Risikofaktoren</td>
<td>Vorsorge-Uhr, Impf-Uhr, Med-Marker, Alcohol Calculator</td>
</tr>
<tr>
<td>Laien/Gesunde</td>
<td>Sekundärprävention: Apps für Gesunde mit gesundheitlichen Risikofaktoren</td>
<td>Raucherstopp, Drinking Time Machine</td>
</tr>
<tr>
<td>Laien/Betroffene</td>
<td>Tertiärprävention: Apps für bereits (chronisch) Erkrankte</td>
<td>OnTrack Diabetes, Diabetes-Uhr; Asthmalavista, Rheuma Track</td>
</tr>
<tr>
<td>Laien/Angelhöritge</td>
<td>Tertiärprävention: Apps für (pflegende) Angehörige</td>
<td>Tweri: Alzheimer Caregiver, Al-Finder</td>
</tr>
<tr>
<td>Experten</td>
<td>Tertiärprävention: Apps für medizinische und pflegerische Experten</td>
<td>Checkme! Klinikstandards, Leitlinien-App Onkologie</td>
</tr>
</tbody>
</table>

Tabelle 1: Präventionsebenen (Scherenberg und Kramer 2013, S. 116)

Gesundheits-Apps sind ein Teilbereich von mHealth; diese Apps unterstützen ihre Anwender*innen, bewusst mit ihrer Gesundheit umzugehen und ein gesundes Leben zu führen. Sie decken überwiegend die Bereiche Ernährung und Gewichtsabnahme, Bewegung, allgemeine Fitness sowie Suchtverhalten ab (Albrecht 2016, 19xx). Die Zielgruppe dieser Apps sind Menschen, die gesundheitsbewusst leben möchten, aber nicht in medizinischer Behandlung sind.

Verhaltensänderung durch Apps

Im Folgenden werden einige Studien kurz referiert, die in den Bereichen Allgemeine Fitness, Ernährung und Suchtverhalten (Rauchentwöhnung) der Frage nachgegangen sind, ob die Nutzung einer Gesundheits-App zu Verhaltensänderungen geführt hat (vgl. auch die Übersicht in Tabelle 2).

Die meisten Studien verwendeten ein randomisiert-kontrolliertes Design, teilten also die Proband*innen in eine Versuchsgruppe, die mit der jeweiligen App ausgestattet wurde, und eine Kontrollgruppe ein, die keine App erhielt (Kabisch et al. 2011, 633).

"If someone is really trying to work hard on this and then it’s telling them that they have not done very well, or that they have not reached their goals then it could go either way: it could motivate them or it could just make them feel like they’re not achieving anything.” (Dennison et al. 2013, S. 5)

Einige Teilnehmende gaben an, die App nur kurze Zeit genutzt zu haben, da ihnen das Einpflegen der Daten zu mühsam war und sie den Nutzen nicht erkennen konnten.

<table>
<thead>
<tr>
<th>Autor/et al.</th>
<th>Jahr</th>
<th>Titel</th>
<th>N</th>
<th>Instrument</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charness/Gneezy</td>
<td>2009</td>
<td>Incentives to Exercise</td>
<td>40 + 60</td>
<td>Beobachtung, Befragung</td>
<td>Positiver Effekt extrinsicher Motivation auf Nutzer</td>
</tr>
<tr>
<td>Dennison et al.</td>
<td>2013</td>
<td>Opportunities and Challenges for Smartphone Applications in Supporting Health Behavior Change</td>
<td>19</td>
<td>Befragung, Beobachtung</td>
<td>Gemischter Effekt von Apps auf Nutzer</td>
</tr>
<tr>
<td>Mattila et al.</td>
<td>2013</td>
<td>Personal Health Technologies in Employee Health Promotion: Usage Activity, Usefulness, and Health Related Outcomes in a 1-Year Randomized Controlled Trial</td>
<td>114</td>
<td>Beobachtung, Befragung, Interviews</td>
<td>Positiver Effekt von Apps auf Nutzer</td>
</tr>
<tr>
<td>Glynn et al.</td>
<td>2014</td>
<td>Effectiveness of a smartphone application to promote physical activity in primary care</td>
<td>90</td>
<td>Beobachtung</td>
<td>Positiver Effekt von Apps auf Nutzer</td>
</tr>
<tr>
<td>Buller et al.</td>
<td>2015</td>
<td>Evaluation of Immediate and 12-Week Effects of a Smartphone Sun-Safety Mobile Application</td>
<td>202</td>
<td>Befragung</td>
<td>Positiver Effekt, abhängig vom Alter</td>
</tr>
<tr>
<td>Dallinga et al.</td>
<td>2015</td>
<td>App use, physical activity and health lifestyle: a cross sectional study</td>
<td>4307</td>
<td>Befragung</td>
<td>Positiver Effekt von Apps auf Nutzer</td>
</tr>
<tr>
<td>Direito et al.</td>
<td>2015</td>
<td>Apps for Improving Fitness and Increasing Physical Activity Among Young People: The AIMFIT Pragmatic Randomized Controlled Trial</td>
<td>51</td>
<td>Beobachtung</td>
<td>Kein Effekt von Apps auf Nutzer</td>
</tr>
<tr>
<td>Naimark et al.</td>
<td>2015</td>
<td>The Impact of a Web-Based App in Promoting Healthy Lifestyles</td>
<td>85</td>
<td>Beobachtung, Befragung</td>
<td>Positiver Effekt von Apps auf Nutzer</td>
</tr>
<tr>
<td>Bricker et al.</td>
<td>2016</td>
<td>Single-arm trial of the second version of an acceptance & commitment therapy smartphone application for smoking cessation</td>
<td>99</td>
<td>Befragung, Beobachtung</td>
<td>Positiver Effekt von Apps auf Nutzer</td>
</tr>
<tr>
<td>Steinert et al.</td>
<td>2016</td>
<td>App-basiertes Selbstmonitoring bei Typ-2-Diabetes</td>
<td>36</td>
<td>Fragebogen</td>
<td>Perceived Usefulness/Reminder-funktion</td>
</tr>
<tr>
<td>De Cock et al.</td>
<td>2017</td>
<td>Use of Fitness and Nutrition Apps: Associations With Body Mass Index, Snacking, and Drinking Habits in Adolescents</td>
<td>889</td>
<td>Selbstenschätzung</td>
<td>Vorhandene Verhaltensintention</td>
</tr>
<tr>
<td>Miller et al.</td>
<td>2017</td>
<td>Mobile Technology Interventions for Asthma Self-Management: Systematic Review and Meta-Analysis</td>
<td>103</td>
<td>Auswertung von Datenbanken</td>
<td>Positiver Effekt, aber keine konkreten Einflussfaktoren genannt</td>
</tr>
</tbody>
</table>

Tabelle 2: Studien zu Verhaltensänderungen durch Gesundheits-Apps (eigene Darstellung)

Vergleichbare Ergebnisse liefern einige Studien, welche die Wirkung von Apps untersucht haben, die im Grenzbereich zwischen Gesundheits- und Medizin-Apps liegen. Miller et al. (2017, S. 1 und 18) konnten nachweisen, dass die Nutzung einer

Wenn die Versicherten mit Hilfe einer Tracking-App dokumentieren können, dass sie ein zuvor vereinbartes Ziel (z.B. eine bestimmte Zahl verbrannter Kalorien) erreicht haben, erhalten sie Boni oder gar spezielle „Self-Tracking-Tarife“. In Deutschland ist es bislang aus rechtlichen Gründen nicht möglich, die Versicherungs-Tarife derart zu differenzieren (Lass 2018, S. 10f.).

Fazit

Insgesamt lässt sich also festhalten, dass es bereits eine Reihe von Studien gibt, die sich mit der durch Gesundheits-Apps ausgelösten Verhaltensänderungen befasst und
dabei überwiegend – jedoch nicht einhellig – positive Effekte auf Lebensstil und Gesundheitsverhalten nachgewiesen haben. Als mögliche Faktoren, die diese Wirkungen von Apps auf das Verhalten der Nutzer*innen begünstigen, wurden dabei unter anderem die Transparenz, die Bedienbarkeit oder der konkrete Nutzen genannt.

2.3 Navigations-Apps

Dynamische Navigationssysteme unterscheiden sich von ihren Vorgängern dadurch, dass sie auf aktuellen Verkehrsdaten basieren und so in Echtzeit ein aktuelles Lagebild vermitteln, auf dessen Grundlage Alternativrouten vorgeschlagen werden können (Google Maps 2018; TomTom 2015). Navigationssysteme verfolgen das Ziel, die individuelle Fahrzeit zu optimieren, also eine möglichst kurze Strecke zu wählen und Verzögerungen durch Baustellen oder Staus zu vermeiden. Ob dies am besten erreicht werden kann, wenn das gesamte Verkehrssystem optimiert wird und nicht nur das Verhalten einzelner Verkehrsteilnehmer, ist ein Thema, das derzeit in der

2 Weitere Details zur Echtzeit-Navigation finden sich in der zweiten Vertiefungsstudie „Echtzeit-Steuerung komplexer Systeme“.
Community der Verkehrsplaner unter dem Label „intelligente Verkehrssteuerung“ heftig diskutiert wird.\footnote{Siehe dazu ausführlich die Vertiefungsstudie „Echtzeitsteuerung komplexer Systeme“.}

Zu den meistgenutzten kostenlosen Navigations-Apps für den Straßenverkehr zählen sowohl bei Android- als auch bei iOS-Geräten: Google Maps, HERE WeGo, Waze, TomTomGo und Maps.me (Humpa 2016; Schwalb 2012). Diese liefern in Echtzeit aktuelle Verkehrsinformationen und versorgen die Nutzer*innen mit Routenplänen für den mobilen Individualverkehr (Auto, Rad), teilweise auch mit Informationen über den öffentlichen Verkehr (Bus und Bahn). Zudem bieten sie Zusatz-Services wie Hinweise auf Tankstellen, Raststätten etc. (Google Play 2017; TomTom 2017).

Verhaltensänderung durch Apps

Ob Navigations-Apps das Verhalten der Verkehrsteilnehmer, z.B. in punkto Routenwahl, tatsächlich beeinflussen, ist zwar in einigen Studien bereits untersucht worden (vgl. die Übersicht in Tabelle 3); die Befunde sind jedoch uneindeutig und keineswegs befriedigend, was auch Khoo und Asitha (2016a) anmerken und als Motivation für ihre Studien benennen:

„As such, the relationship between drivers’ perceived traffic condition and travel choice is unknown and unestablished. Therefore, engineers are unaware on whether traffic conditions influence drivers’ travel choices.“ (Khoo und Asitha 2016a, S. 177)

Durch Befragung von 2880 Personen fanden die beiden Forscher heraus, dass Autofahrer*innen bei steigendem Verkehrsaufkommen eher geneigt sind, den Handlungsempfehlungen des Navigationssystems zu folgen (also z.B. eine der vorgeschlagenen Alternativrouten zu wählen). In anderen Fällen ziehen sie eher eine Änderung der Abfahrtszeit in Betracht (Khoo und Asitha 2016a: 192).

In einer zweiten Studie (Khoo und Asitha 2016b) gingen die beiden Forscher der Frage nach, welche Faktoren die Bereitschaft der Nutzer*innen erhöhen, den
Empfehlungen von Navigations-Apps zu folgen. Sie ermittelten dies über eine Be-
fragung von 1000 Probanden, die verschiedene Attribute von Navigations-Apps be-
werten sollten. Neben anderen Faktoren hatte vor allem die Informationsgenauigkeit eine

<table>
<thead>
<tr>
<th>Autor</th>
<th>Jahr</th>
<th>Titel</th>
<th>N</th>
<th>Instrument</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdel-Aty et al.</td>
<td>1997</td>
<td>Using stated Preference Data for Studying the effect of Advanced Traffic Information on Drivers’ Route Choice</td>
<td>564 + 143 (FU)</td>
<td>Befragung</td>
<td>Reliabilität der Informationen ist für Verhaltensänderung relevant</td>
</tr>
<tr>
<td>Dia et al.</td>
<td>2002</td>
<td>An agent-based approach to modelling driver route choice</td>
<td>167</td>
<td>Befragung, Simulationsstudie</td>
<td>Handlungsempfehlungen führen zu Routenänderung</td>
</tr>
<tr>
<td>Choocharukul</td>
<td>2008</td>
<td>Effects of attitudes, socioeconomic and characteristics on stated route di-version: a structural equation modeling approach of road users in Bangkok travel</td>
<td>388</td>
<td>Befragung</td>
<td>Wahrgenommener Nutzen der Handlungsempfehlung</td>
</tr>
<tr>
<td>Roshandeh/ Che-Puan</td>
<td>2009</td>
<td>Assessment of impact of variable message signs on traffic surveillance in Kuala Lumpur</td>
<td>-</td>
<td>Auswertung von Verkehrsdaten</td>
<td>Handlungsempfehlungen führen zu Stausminderung (keine Einflussfaktoren genannt)</td>
</tr>
<tr>
<td>Paefken et al.</td>
<td>2012</td>
<td>Driving Behavior Analysis with Smartphones: Insights from a Controlled Field Study</td>
<td>72</td>
<td>Befragung, Beobachtung</td>
<td>Effekt von Apps auf Nutzer</td>
</tr>
<tr>
<td>Ben-Elia et al.</td>
<td>2013</td>
<td>The impact of travel information’s accuracy on route-choice</td>
<td>36</td>
<td>Befragung, Beobachtung</td>
<td>Verschiedene Effekte von Verkehrsinformationen auf Nutzer; Per-</td>
</tr>
<tr>
<td>Khoo/ Ong</td>
<td>2013</td>
<td>Evaluating perceived quality of traffic information system using structural equation modeling</td>
<td>1506</td>
<td>Befragung</td>
<td>Effektiv erscheinende Navigationssysteme sind verlässlicher</td>
</tr>
<tr>
<td>Simão</td>
<td>2015</td>
<td>Impacts of Advanced Travel Information Systems on Travel Behaviour: Smartmoov’ case study</td>
<td>50</td>
<td>Befragung</td>
<td>Kein Effekt von App auf Nutzer</td>
</tr>
<tr>
<td>Khoo/Asitha</td>
<td>2016a</td>
<td>An impact analysis of traffic image information system on driver travel choice</td>
<td>2880</td>
<td>Befragung</td>
<td>Mit steigendem Verkehrsaufkommen wird Verhaltensänderung wahrscheinlicher</td>
</tr>
<tr>
<td>Khoo/Asitha</td>
<td>2016b</td>
<td>User requirements and route choice response to smartphone traffic applications (apps)</td>
<td>1000</td>
<td>Befragung</td>
<td>Positiver Effekt von Apps auf Nutzer; Informationsgenauigkeit der App</td>
</tr>
<tr>
<td>Ruan et al.</td>
<td>2016</td>
<td>The Empirical Research on Information Behavior Characteristics and Satisfaction of Drivers Based on Smart Phone</td>
<td>279</td>
<td>Befragung</td>
<td>Verschiedene Effekte von Apps auf Nutzer; Zufriedenheit hängt positiv mit Vertrauensgrad zusammen</td>
</tr>
</tbody>
</table>

Tabelle 3: Studien zu Verhaltensänderungen durch Navigations-Apps (eigene Darstellung)

positive Wirkung, da sie das Vertrauen in die App stärkte. Auch die wahrgenom-
mene Zeitsparnis spielte bei der Entscheidung, die Route zu ändern, eine Rolle.
Handlungsempfehlungen wurden vor allem dann umgesetzt, wenn die vorgeschlagene Strecke den Verkehrteilnehmenden vertraut war. Soziodemografische Faktoren hatten hingegen keinen signifikanten Einfluss.

Khoo und Asitha untersuchten im Rahmen ihrer Befragung auch die Gründe, warum ein Wechsel zu einer vorgeschlagenen Alternativ-Route nicht erfolgte: die Befragten gaben an, dass sie nicht überzeugt seien, dass die Verkehrssituation auf der Ausweichroute besser sei (45%), dass es sich um gebührenpflichtige Straßen handele (18%) oder dass die Strecke dadurch länger werde (12%) (Khoo und Asitha 2016b, S. 60).

Eine andere Forschergruppe (Ben-Elia et al. 2013) untersuchte Zusammenhänge zwischen Fahrertypen und Routenwahl-Verhalten; sie stellte dabei fest, dass risikoverse Reisende eine zuverlässigere Route gegenüber einer weniger zuverlässigen mit einer kürzeren Reisezeit bevorzugen. Ruan et al. (2016) fanden schließlich heraus, dass die Zufriedenheit und das Vertrauen von Nutzer*innen in Navigations-Apps steigen, je häufiger die App verwendet wurde.

Fazit

Interessanterweise scheint sich eine Bereitschaft zur Routenänderung vor allem dann zu zeigen, wenn das befahrene Gebiet den Nutzer*innen ohnehin bekannt ist, sodass sie sich auch auf der Ausweichroute sicher fühlen. Hieraus kann die Vermutung abgeleitet werden, dass auch die wahrgenommene Kontrolle und eigene Kompetenzerwartungen in diesem Zusammenhang eine Rolle spielen.

Methodisch scheint für die Erhebung dieser Bereitschaft eine Kombination aus Befragung und Szenarien zielführend zu sein. Im Rahmen dieses Gutachtens erscheint es dabei ratsam, verschiedene Szenarien abzufragen, welche sowohl die Situation vor der Fahrt als auch eine spontane Routenänderung währenddessen abbilden. Während vor der Fahrt die gesamte Route ersichtlich wird und daher bekannt ist, kann eine spontane Änderung der Route die angesprochene Unkenntnis der Route simulieren.
3 Theoretische Rahmung

Im Mittelpunkt unserer Studie stehen die beiden Fragen, ob Handlungsempfehlungen von Apps Verhaltensänderungen auslösen und welche Rolle das Vertrauen dabei spielt, das die Nutzer*innen den Apps entgegenbringen. Es handelt sich also um den dritten Schritt des in Kapitel 1 dargestellten Big-Data-Prozesses. Zudem suchen wir nach externen Faktoren, die das Vertrauen, aber auch die Bereitschaft zur Verhaltensänderung beeinflussen.

Der Überblick über den Stand der Forschung zu mobilen Apps in Kapitel 2 hat gezeigt, dass bereits einige Faktoren (wie etwa der wahrgenommene Nutzen einer App in Bezug auf die Verkürzung der Reisezeit) identifiziert worden sind, die auch in unserer Studie eine Rolle spielen werden. Er hat jedoch auch einige Defizite und Forschungslücken aufgezeigt, die wir im Folgenden schließen wollen.

Um die genannten Fragestellungen systematisch untersuchen zu können, benötigen wir ein Modell, das die Zusammenhänge zwischen den Verhalten von Individuum und den sie beeinflussenden Faktoren beschreibt und in eine operationalisierbare Form bringt, die es ermöglicht, die behaupteten Hypothesen empirisch zu testen.

Trotz dieser Bedenken werden auch wir im Folgenden eine modifizierte Version des TAM verwenden, die sich vom Original-TAM unter anderem dadurch unterscheidet, dass sie den Versuch unternimmt, auch das reale Verhalten der Probanden zu erheben, und zwar mit Hilfe von Szenarien.

3.1 Modellierung der Bereitschaft zur Verhaltensänderung

Theory of Reasoned Action

Diese wiederum wird von zwei Faktoren beeinflusst: der Einstellung und der subjektiven Norm (vgl. Abbildung 5).

Abbildung 5: Theory of Reasoned Action (in Anlehnung an Fishbein/Ajzen 1975)

Die Kernaussage dieses Modells lautet: Je größer die Handlungsintention ist (die sich empirisch über die „Einstellung“ und „subjektive Norm“ erforschen lässt), desto wahrscheinlicher ist auch ein bestimmtes Verhalten. Ein Problem dieses Ansatzes ist allerdings die mangelnde Möglichkeit, ein Verhalten abzubilden, das die Akteure nur unvollständig unter Kontrolle haben.

Theory of Planned Behaviour

Der neue Faktor „wahrgenommene Kontrolle“ beschreibt die (subjektive) Einschätzung eines Akteurs, wie leicht es ihm fällt, ein gewünschtes Verhalten durchzuführen, was auch von der jeweiligen Situation abhängt, in der er sich bei der Durchführung seiner Handlung befindet.

Prospect Theory

Ein weiteres prominentes Modell, das wir jedoch im Folgenden nicht weiter berücksichtigen werden, ist die Neue Erwartungstheorie, die sich mit der Psychologie des

Dabei spiele auch der Referenzpunkt eine Rolle; so macht es beispielsweise einen Unterschied, wenn der Liter Diesel auf 1,30 Euro steigt, die Erwartungen aber durch das vorherige Preisniveau in Höhe von 1,20 Euro geprägt sind. Ganz anders verhält es sich hingegen, wenn man aus dem Italien-Urlaub zurückkehrt, wo der Liter Diesel 1,60 Euro gekostet hat; in diesem Fall werden 1,30 Euro als Gewinn und nicht als Verlust gewertet.

3.2 Das TAM-Modell

- den wahrgenommenen Nutzen eines Produkts („Perceived Usefulness“ - PU) sowie
- die wahrgenommene Einfachheit der Bedienung („Perceived Ease of Use“ - PEOU) – oder einfacher: die wahrgenommene Nutzerfreundlichkeit.
Diese beiden Faktoren beeinflussen die – bereits aus TRA und TPB bekannte – Variable „Attitude“; die „subjektive Norm“ wie auch die „wahrgenommene Kontrolle“ tauchen hier hingegen nicht mehr explizit auf (Davis et al. 1989, S. 386).

Den wahrgenommenen Nutzen (PU) definiert Davis als “den Grad, zu dem eine Person davon überzeugt ist, dass die Nutzung eines bestimmten Systems ihre Leistung steigert” (Davis 1989, S. 320), also dass das System effizient ist, die Produktivität steigert, Zeit spart und für die eigene Tätigkeit relevant ist. Im Fall von Smartphone-Apps wäre dies beispielsweise die Wahrnehmung, dass deren Nutzung zu einer Verkürzung der Reisezeit (Navigations-Apps), zu einer Verbesserung der Fitness (Gesundheits-Apps) oder zu einer passenden Wahl der Kleidung (Wetter-Apps) führt.

Die wahrgenommene Nutzerfreundlichkeit (PEOU) misst hingegen, wie weit ein*e Anwender*in die Nutzung des Systems als eine Erleichterung empfindet, also wie hoch die körperliche und die mentale Be- bzw. Entlastung sind und wie schnell die Bedienung des Systems erlernt werden kann. Im Fall von Smartphone-Apps wäre dies die Wahrnehmung, dass Apps einfach zu installieren und zu bedienen sind und zudem ihre Empfehlungen in einer verständlichen und hilfreichen Weise dargeboten werden.

Die beiden Faktoren PU und PEOU werden ihrerseits durch externe Variablen beeinflusst wie etwa die Einschätzung der eigenen Kompetenz, bereits gemachte Erfahrungen oder wahrgenommene Risiken; diese externen Variablen haben aber – so die starke These des Modells – keinen direkten Einfluss auf das Verhalten, sondern wirken lediglich indirekt über die Faktoren PU und PEOU (Davis 1989). Davis ging zudem davon aus, dass es einen direkten Zusammenhang zwischen den beiden zentralen Faktoren seines Modells gibt, und zwar derart, dass die wahrgenommene Nutzerfreundlichkeit (PEOU) einen Einfluss auf den wahrgenommenen Nutzen (PU) hat, dass also Systeme, die einfach zu bedienen sind, auch als nützlich empfunden werden. Einen umgekehrten Zusammenhang gebe es hingegen nicht.

Hieraus ergeben sich folgende drei Hypothesen, die zum Kernbestand eines jeden TAM-Modells – und damit auch unserer Studie – gehören:

H1a Die wahrgenommene Nutzerfreundlichkeit einer App hat einen positiven Einfluss Bereitschaft, das eigene Verhalten zu ändern.

H1b Der wahrgenommene Nutzen einer App hat einen positiven Einfluss Bereitschaft, das eigene Verhalten zu ändern.
H1c Die wahrgenommene Nutzerfreundlichkeit einer App hat einen positiven Einfluss auf den wahrgenommenen Nutzen.

Eine deutliche Abweichung gegenüber dem Original-TAM besteht darin, dass wir als abhängige Variablen nicht die Nutzungsintention und die tatsächliche Nutzung des Systems, sondern die Bereitschaft zur Verhaltensänderung wählen (siehe dazu ausführlich Kap. 3.4).

Davis hat Skalen zur Messung der beiden zentralen Akzeptanz-Variablen PU und PEOU entwickelt und ausgiebig getestet (s.u.); aufgrund ihrer hohen Reliabilität werden sie von der Technikakzeptanzforschung bis heute mit nur geringen Adaptationen (sowie gegenstandsspezifischen Modifikationen) verwendet.

Das TAM wurde in der Folgezeit mehrfach variert und zum TAM 2 weiterentwickelt, das insofern eine Vereinfachung enthält, als die Variable „Attitude“ entfällt und durch PU und PEOU ersetzt wird. Zudem taucht die subjektive Norm wieder auf, und es werden etliche externe Faktoren explizit benannt, die allerdings ausschließlich auf PU wirken (vgl. Abbildung 9).

![Abbildung 9: TAM 2 (Venkatesh und Davis 2000, S. 188)](image)

Zu diesen Variablen, die sich zum Teil gegenseitig beeinflussen, zählen nunmehr:

- Die Freiwilligkeit,
- die Erfahrungen*,
- die subjektive Norm,
- die Reputation*,
- die Job-Relevanz,
- die Qualität des Outputs,
- die Sichtbarkeit der Resultate,
- die Selbstdwirksmächtigkeit* in Sachen IT-Systeme,
- die subjektive Kontrollwahrnehmung*,
- die Technikaffinität*,
- die Spielfreude in Bezug auf IT-Systeme,
- der wahrgenommene Spaß,
- die objektive Nutzbarkeit (Venkatesh und Bala 2008: 280).

Die mit einem Stern (*) markierten Variablen fließen auch in unser Modell ein. Dabei stellen diese Variablen jene Faktoren dar, welche aus dem ursprünglich auf die Arbeitswelt ausgerichteten Erhebungskontext herausgelöst und auf unseren Gegenstand übertragen werden können.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Jahr</th>
<th>Titel</th>
<th>Items</th>
<th>Skala</th>
<th>Alpha</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davis</td>
<td>1989</td>
<td>Perceived Ease of Use</td>
<td>14</td>
<td>7</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>Davis</td>
<td>1989</td>
<td>Perceived Usefulness</td>
<td>14</td>
<td>7</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>Davis</td>
<td>1993</td>
<td>Perceived Ease of Use of Electronic Mail</td>
<td>10</td>
<td>7</td>
<td>0,91</td>
<td>112</td>
</tr>
<tr>
<td>Davis</td>
<td>1993</td>
<td>Perceived Usefulness of Electronic Mail</td>
<td>10</td>
<td>7</td>
<td>0,97</td>
<td>112</td>
</tr>
<tr>
<td>Kothgassner et al.</td>
<td>2012</td>
<td>Benutzerfreundlichkeit</td>
<td>3</td>
<td>7</td>
<td>0,81</td>
<td>178</td>
</tr>
<tr>
<td>Kothgassner et al.</td>
<td>2012</td>
<td>Nützlichkeit</td>
<td>4</td>
<td>7</td>
<td>0,80</td>
<td>178</td>
</tr>
</tbody>
</table>

Tabelle 4: Skalen zu den Konstrukten „Wahrgenommene Nutzerfreundlichkeit“ und „Wahrgenommener Nutzen“ (eigene Darstellung)

Kritische Würdigung

auf die sozialen Strukturen und Dynamiken hat („Logik der Aggregation), ist nicht Gegenstand des TAM. Soziologische Modelle rücken hingegen die Frage in den Mittelpunkt, wie es zwischen Zeitpunkt t_1 und t_2, vermittelt durch die Handlungen einer Vielzahl von Akteuren, zu Veränderungen auf der Makro-Ebene des Systems kommt. (vgl. Abbildung 11).

Zudem verfolgen soziologische Handlungsmodelle den Ansatz, das modellierte Verhalten mit dem realen Verhalten großer Kollektive abzuleiten, etwa durch Hinzu ziehen historischer Daten oder durch Abgleich mit Realdaten, um auf diese Weise die Modelle zu kalibrieren. Dabei wird deutlich, dass die – per Befragung erhobenen – Einstellungen oftmals verzerrt sind und das reale Verhalten nicht hinreichend

Abbildung 11: Modell soziologischer Erklärung (Quelle: Esser 1993, S. 93)

Abbildung 12: Kombination von TAM und MSE (eigene Darstellung)

Die „subjektive Norm“ oder der Einfluss des sozialen Umfelds sind beispielsweise Faktoren, die sich gut in die „Logik der Situation“ einpassen lassen. Und „Technikaffinität“ oder „wahrgenommene Nutzerfreundlichkeit“ sind Faktoren, die auf Eigenschaften des Akteurs verweisen und sein subjektives Entscheidungsverhalten erklären können („Logik der Selektion“). Im dritten Schritt trennen sich, wie bereits erwähnt, die Wege von TAM und MSE. Die agentenbasierte Modellierung und Simulation hat sich hier als ein probater Weg erwiesen, durch Simulationsexperimente herauszufinden, welche strukturellen Effekte sich aus dem „handelnden Zusammenwirken“ (Schimank 2010) einer Vielzahl heterogener Agenten ergeben (Adelt et al. 2018, vgl. auch Vertiefungsstudie „Echtzeitsteuerung komplexer Systeme“).

3.3 Erweiterung des TAM um den Faktor Vertrauen

Dimensionen des Vertrauens

Institutionales Vertrauen bezieht sich hingegen auf konkrete Situationen oder Strukturen, also zum Beispiel auf das Vorliegen von Bedingungen, die eine positive Entwicklung des riskanten Sachverhalts wahrscheinlich erscheinen lassen. Bezogen auf Smartphone-Apps wäre dies das Vertrauen in die politischen, juristischen und gesellschaftlichen Institutionen des Datenschutzes.

Das interpersonale Vertrauen bezieht sich auf spezifische Andere – im konkreten Fall auf die App-Anbieter – und bezeichnet die allgemeine Grundhaltung („trusting beliefs“), zu welchem Grad der Treuhänder als kompetent, gutmütig, integer und in seinen Handlungen vorhersehbar betrachtet wird. Bezogen auf mobile Apps und deren Anbieter wäre dies der Glauben, dass diese die angebotene Leistung angemessen erbringen, dass sie am eigenen Wohlbefinden interessiert sind, dass sie wahrhaftig und ihre Handlungen zudem abschätzbar sind. Zudem beinhaltet diese Dimension die Bereitschaft, Kontrolle an diesen spezifischen Anderen abzugeben, also zum Beispiel die Routenplanung an eine App zu delegieren.

Eine zentrale Frage wird dabei sein, ob Vertrauen im erweiterten TAM-Modell ein externer Faktor unter vielen ist, oder ob Vertrauen zu einem Kernbestandteil des TAM gemacht werden muss, der die beiden zentralen Variablen PU und PEOU ergänzt bzw. sogar ersetzt. Denn es liegt auf der Hand zu postulieren, dass Vertrauen eine zentrale Rolle bei der Bereitschaft spielt, Apps zu nutzen, also Daten preiszugeben und den Empfehlungen der Apps zu folgen.

Vertrauen in Online-Shops

Die Forscher haben die Hypothese untersucht und bestätigt, dass nicht nur PU und PEOU, sondern auch das Vertrauen einen direkten, zudem signifikant positiven Einfluss auf die Absicht zur Nutzung eines Online-Shops haben („intended use“). Zudem wirken die drei intermediären Variablen aufeinander: Vertrauen beeinflusst den wahrgenommenen Nutzen (PU) (ein vertrauensvoller Shop wird als nützlich betrachtet) und wird seinerseits von der wahrgenommenen Nutzerfreundlichkeit (PEOU) beeinflusst (je einfacher der Shop zu bedienen ist, desto höher ist das Vertrauen).

Ferner werden die Variablen „Vertrauen“ und PEOU, nicht aber PU, von externen Faktoren beeinflusst, die ihrerseits keinen direkten Einfluss auf die Verhaltensintention haben. Dies verdeutlicht nochmal, dass Vertrauen neben PEOU eine wichtige intermediäre Variable ist, die die Akzeptanz elektronischer Dienstleistungen erklären kann. Und es zeigt, dass es sich lohnt, unterschiedliche Dimensionen des Vertrauens zu betrachten, beispielsweise die erfahrungsbasierte Vertrautheit („knowledge-based familiarity“), die als externer Faktor keine signifikante Wirkung auf das Vertrauen, wohl aber auf PEOU hat. Diese Vertrautheit wurde über die Bekanntheit
des Anbieters sowie über die Dauer der bisherigen Nutzung der betreffenden Web-

Das institutionelle Vertrauen zeigt in Form der „institution-based situational norma-
lity“ einen signifikanten Einfluss sowohl auf das Vertrauen als auch auf PEOU, in Form der „institution-based structural assurances“ lediglich auf das Vertrauen. Ein weiterer Faktor in dem Modell ist die Kosten-Nutzen-Abwägung („calculation ba-
sed“), mit deren Hilfe die Nutzer*innen das Risiko abschätzen, das sie mit ihren
Handlungen eingehen. Es wirkt in signifikanter Weise lediglich auf den Faktor „Ver-
trauen“.

Das erweiterte Forschungsmodell

Die Studie von Gefen et al. zeigt also, dass es Sinn macht, das TAM um den Faktor „Vertrauen“ zu erweitern und zu ergänzen, wie es in Abbildung 14 zu sehen ist. Aus
dem Basis-TAM wird, wie oben bereits erwähnt, die Vermutung übernommen, dass
PEOU direkt auf PU wirkt, aus dem erweiterten Modell von Gefen et al. zudem, dass
PEOU auf Vertrauen und dieses wiederum auf PU wirkt. Zudem wird das dispositi-
onale Vertrauen, wie im letzten Abschnitt erwähnt, als externer Faktor modelliert.

Hieraus ergeben sich nun folgende Hypothesen:

\[H2a \] Das Vertrauen, insbesondere in Anbieter und Datenschutz, hat einen posi-
tiven Einfluss Bereitschaft, das eigene Verhalten zu ändern.

\[H2b \] Das Vertrauen, insbesondere in Anbieter und Datenschutz, hat einen posi-
tiven Einfluss auf den wahrgenommenen Nutzen.

\[H2c \] Das Vertrauen, insbesondere in Anbieter und Datenschutz, wird durch die
wahrgenommene Nutzerfreundlichkeit positiv beeinflusst.

Zur Messung des dispositionalen Vertrauens, also der grundsätzlichen Bereitschaft
to vertrauen, eignet sich die von Beierlein et al. (2014a) entwickelte Kurzskala mit
drei Items, die eine hohe Reliabilität aufweist.

Das interpersonale Vertrauen ist hier vor allem in Bezug auf das Vertrauen in App-
Anbieter von Interesse. Rotter (1967) hat die „Interpersonal Trust Scale“ (IST) mit

<table>
<thead>
<tr>
<th>Autor/Jahr</th>
<th>Titel</th>
<th>Items</th>
<th>Skala</th>
<th>Alpha</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotter 1967</td>
<td>A new scale for the measure of interpersonal trust (interpersonales Vertrauen)</td>
<td>25</td>
<td>5-stufig (absteigend)</td>
<td>-</td>
<td>547</td>
</tr>
<tr>
<td>Amelang/Bartussek 1997</td>
<td>Zwischenmenschliches Vertrauen (interpersonales Vertrauen)</td>
<td>27</td>
<td>5-stufig (aufsteigend)</td>
<td>α = 0,85</td>
<td>135</td>
</tr>
<tr>
<td>Beierlein et al. 2014</td>
<td>KUSIV3-Skala (dispositionales Vertrauen)</td>
<td>3</td>
<td>5-stufig (aufsteigend)</td>
<td>ω = 0,85</td>
<td>1143</td>
</tr>
<tr>
<td>Anand/Kutty 2015</td>
<td>Scale to measure trust in the public healthcare (institutionelles Vertrauen)</td>
<td>23</td>
<td>-</td>
<td>α = 0,86</td>
<td>200</td>
</tr>
<tr>
<td>Yan et al. 2013</td>
<td>Constructs, Definitions and Scales</td>
<td>108</td>
<td>7-stufig (aufsteigend)</td>
<td>Using Behav.: α = 0,71 Reflection Behav.: α = 0,85 Correlation Behav.: α = 0,79 Trust Behav.: α = 0,90</td>
<td>553</td>
</tr>
</tbody>
</table>

Tabelle 5: Skalen zum Konstrukt Vertrauen (eigene Darstellung)

3.4 Bereitschaft zur Verhaltensänderung

Eine deutliche Abweichung gegenüber dem ursprünglichen TAM besteht darin, dass wir als abhängige Variablen nicht die Nutzungsintention und die tatsächliche Nutzung des Systems wählen, sondern – in leicht modifizierter Form – die Bereitschaft zur Verhaltensänderung. Dies ist der spezifischen Fragestellung unserer Studie geschuldet, die herauszufinden versucht, inwiefern Nutzer*innen aufgrund von Handlungsempfehlungen von Apps gewillt sind, ihr Verhalten zu ändern. Es geht hier also nicht um die Nutzung von Apps, sondern um die Befolgung der Hinweise bzw. Anweisungen, die Apps ihren Nutzer*innen geben.

Fogg (2009) unterscheidet 35 Formen von Verhaltensänderungen, die unter anderem danach abgestuft sind, ob das gewählte Verhalten für die betreffende Person neu ist.
oder bereits ausgeübt wurde, ob das bisherige Verhalten beendet wird, auf welchen Zeitraum sich die Verhaltensänderung erstreckt und wer den Zeitpunkt der Verhaltensänderung festlegt – die Nutzer*in selbst oder die App.

Alle vier bislang genannten Arbeiten bieten jedoch wenig Ansatzpunkte zur Entwicklung eines theoretischen Konstruks „Bereitschaft zur Verhaltensänderung“ sowie eines entsprechenden Messinstruments. Wir gehen daher im Folgenden davon aus, dass dieser Faktor, der die unabhängige

<table>
<thead>
<tr>
<th>Conroy et al. (2014)</th>
<th>Middelweerd et al. (2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anleitung zur Ausführung der jeweiligen Handlungsempfehlung</td>
<td>Anzeige von Feedback zur eigenen Leistung</td>
</tr>
<tr>
<td>Beispielhafte Vorführung des empfohlenen Verhaltens</td>
<td>Aufforderung zur Selbstüberwachung</td>
</tr>
<tr>
<td>Anzeige von Feedback zur eigenen Leistung</td>
<td>Aufforderung zu spezifischer Zielsetzung</td>
</tr>
<tr>
<td>Zielsetzung</td>
<td>(soziale) Unterstützung</td>
</tr>
<tr>
<td>(soziale) Unterstützung</td>
<td>Belohnungssystem</td>
</tr>
<tr>
<td>Information über Beifall / Zustimmung anderer</td>
<td>Anleitung zur Ausführung der jeweiligen Handlungsempfehlung</td>
</tr>
<tr>
<td>Evaluation der Zielsetzung</td>
<td>Aufforderung zu üben</td>
</tr>
</tbody>
</table>

3.5 Fazit

Nunmehr sind die zentralen Variablen des um den Faktor Vertrauen erweiterten TAM-Modells entwickelt. Hierbei liegt der Fokus einerseits auf der Bereitschaft zur Verhaltensänderung als abhängiger Variable und andererseits auf dem (institutionalen und interpersonalen) Vertrauen als dem von uns postulierten zentralen
Einflussfaktor.
Im folgenden Kapitel soll geklärt werden, welche externen Faktoren hinzugezogen werden, um das spezifische Thema des Vertrauens in mobile Apps zu untersuchen und die vermuteten Zusammenhänge zu klären.

Abbildung 15: Erweitertes TAM-Modell (eigene Darstellung)
4 Externe Faktoren des TAM-Modells

4.1 Erfahrungen mit Apps

In qualitativer Hinsicht besteht allerdings die Möglichkeit, dass, je länger und häufiger die App genutzt wird, vermehrt Erfahrungen gemacht werden, die die Einstellung zur Technik positiv oder negativ beeinflussen – beispielsweise dadurch, dass Fehlfunktionen oder gewisse Grenzen der Technik häufiger sichtbar werden. Negative Erfahrungen können dazu führen, dass Apps weniger oder nur für weniger wichtige Aufgaben genutzt werden (vgl. Yan et al. 2013, 643).

H3a Die Nutzungshäufigkeit hat einen positiven Einfluss auf die wahrgenommene Nutzerfreundlichkeit von Apps.

H3b Die Nutzungshäufigkeit hat einen positiven Einfluss auf den wahrgenommenen Nutzen von Apps.

H3c Die Nutzungshäufigkeit hat einen positiven Einfluss auf das Vertrauen in Apps (in allen drei Dimensionen).

H3d Die Erfahrung im Umgang mit Smartphones hat einen positiven Einfluss auf die wahrgenommene Nutzerfreundlichkeit von Apps.

H3e Die Erfahrung im Umgang mit Smartphones hat einen positiven Einfluss auf den wahrgenommenen Nutzen von Apps.

H3f Die Erfahrung im Umgang mit Smartphones hat einen positiven Einfluss auf das Vertrauen in Apps (in allen drei Dimensionen).

Und analog in Bezug auf die Erfahrungen:

H4a Negative Erfahrungen haben einen negativen Einfluss auf die wahrgenommene Nutzerfreundlichkeit von Apps.

H4b Negative Erfahrungen haben einen negativen Einfluss auf den wahrgenommenen Nutzen von Apps.

H4c Negative Erfahrungen haben einen negativen Einfluss auf das Vertrauen in Apps (in allen drei Dimensionen).

Für die Messung der Nutzungshäufigkeit verwenden Yan et al. (2013) ein Messinstrument, das die Dauer und Häufigkeit der Nutzung einer Technik dokumentiert. Dies gestaltet sich aus unserer Sicht problematisch, da sie hierbei das Vertrauen der Nutzer*innen direkt abzufragen versuchen (z.B. „the more times you use the messaging, the more you trust it. (Yan et al. 2013, S. 643)). Wir fragen die Erfahrungen im Umgang mit Apps und Smartphones daher stattdessen innerhalb der manifesten Dimensionen Nutzungshäufigkeit und Smartphone-Erfahrung ab.

Die Erhebung negativer Erlebnisse lehnt sich an ein Verfahren von Weyer et al. (2015) an, die Proband*innen mit möglichen Fehlfunktionen ihres Systems zu konfrontieren und sie zu bitten zu benennen, wie häufig sie diese Fehlfunktionen bereits erlebt haben.

4.2 Technikaffinität

H5a Die Technikaffinität einer Person hat einen positiven Einfluss auf die wahrgenommene Nutzerfreundlichkeit von Apps.
H5b Die Technikaffinität einer Person hat einen positiven Einfluss auf den wahrgenommenen Nutzen von Apps.

H5c Die Technikaffinität einer Person hat einen positiven Einfluss auf das Vertrauen in Apps.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Jahr</th>
<th>Titel</th>
<th>Items</th>
<th>Skala</th>
<th>Alpha</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karrer et al.</td>
<td>2009</td>
<td>Technikaffinität</td>
<td>19</td>
<td>5-stufig</td>
<td>>0,8</td>
<td>825</td>
</tr>
<tr>
<td>Kothgassner et al.</td>
<td>2012</td>
<td>Technikinteresse</td>
<td>4</td>
<td>7-stufig</td>
<td>0,89</td>
<td>178</td>
</tr>
<tr>
<td>Neyer et al.</td>
<td>2012</td>
<td>Technikbereitschaft</td>
<td>12</td>
<td>5-stufig</td>
<td>>0,8</td>
<td>825</td>
</tr>
<tr>
<td>Weyer et al.</td>
<td>2015</td>
<td>Technikaffinität</td>
<td>6</td>
<td>5-stufig</td>
<td>0,83</td>
<td>103</td>
</tr>
<tr>
<td>Neyer et al.</td>
<td>2016</td>
<td>Technikbereitschaft</td>
<td>12</td>
<td>5-stufig</td>
<td>0,84</td>
<td>825</td>
</tr>
</tbody>
</table>

Tabelle 7: Skalen zum Konstrukt Technikaffinität (eigene Darstellung)

4.3 Kontrollüberzeugungen

Unsere Hypothesen lauten daher:

H6a Eine hohe wahrgenommene interne Kontrolle einer Person hat einen positiven Einfluss auf die wahrgenommene Nutzerfreundlichkeit von Apps.

H6b Eine hohe wahrgenommene interne Kontrolle einer Person hat einen positiven Einfluss auf den wahrgenommenen Nutzen von Apps.

H6c Eine hohe wahrgenommene interne Kontrolle einer Person hat einen positiven Einfluss auf das Vertrauen in Apps (in allen drei Dimensionen).

H6d Eine hohe wahrgenommene externe Kontrolle einer Person hat einen negativen Einfluss auf die wahrgenommene Nutzerfreundlichkeit von Apps.

H6e Eine hohe wahrgenommene externe Kontrolle einer Person hat einen negativen Einfluss auf den wahrgenommenen Nutzen von Apps.

H6f Eine hohe wahrgenommene externe Kontrolle einer Person hat einen negativen Einfluss auf das Vertrauen in Apps (in allen drei Dimensionen).

<table>
<thead>
<tr>
<th>Autor</th>
<th>Jahr</th>
<th>Titel</th>
<th>Items</th>
<th>Skala</th>
<th>Alpha</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotter</td>
<td>1966</td>
<td>Internal vs. External Control of Reinforcements</td>
<td>29</td>
<td>k.A.</td>
<td>k.A.</td>
<td>1180</td>
</tr>
<tr>
<td>Jakoby/Jacob</td>
<td>1999</td>
<td>Interne und externe Kontrollüberzeugungen</td>
<td>6</td>
<td>5-stufig</td>
<td>0,71 (0,58)</td>
<td>0,62 (0,64)</td>
</tr>
<tr>
<td>Kovaleva et al.</td>
<td>2014</td>
<td>Interne und externe Kontrollüberzeugungen</td>
<td>4</td>
<td>5-stufig</td>
<td>ω = 0,56 (0,64)</td>
<td>1134</td>
</tr>
</tbody>
</table>

Tabelle 8: Skalen zum Konstrukt Wahrgenommene Kontrolle (eigene Darstellung)

4.4 Kompetenzerwartungen

Kontrollüberzeugungen und Kompetenzerwartungen liegen dicht beieinander; doch bei Letzterem geht es eher um die „Einschätzung eigener Kompetenzen, Handlungen erfolgreich ausführen zu können“ ab (Beierlein et al. 2012, S. 7), bzw. die Gewissheit, sich „in schwierigen Situationen … auf [die eigenen] Fähigkeiten verlassen“ zu können (ebd.: 22). In welchem Maße sich die Kompetenzerwartungen auf die Akzeptanz von Technik bzw. das Vertrauen in Technik niederschlägt, ist daher ebenfalls ein Bestandteil dieser Untersuchung. In einem Luftfahrtkontext konnte bereits herausgefunen werden, dass eine zunehmende Kompetenz, welche zu einer Begegnung mit Technik „auf Augenhöhe“ führt, sich positiv auf die wahrgenommene

Unsere Hypothesen lauten daher:

\(H7a \) Hohe Kompetenzwartungen einer Person haben einen positiven Einfluss auf die wahrgenommene Nutzerfreundlichkeit von Apps.

\(H7b \) Hohe Kompetenzwartungen einer Person haben einen positiven Einfluss auf den wahrgenommenen Nutzen von Apps.

\(H7c \) Hohe Kompetenzwartungen einer Person haben einen positiven Einfluss auf das Vertrauen in Apps (in allen drei Dimensionen).

Beierlein et al. (2012) haben eine Kurzskala „Allgemeine Selbstwirksamkeit“ entwickelt, die aus drei Items besteht (vgl. Tabelle 9) und in mehreren Tests sehr gute Reliabilitätswerte erzielt hat, weshalb sie auch für unsere eigene Studie verwendet wird.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Jahr</th>
<th>Titel</th>
<th>Items</th>
<th>Skala</th>
<th>Alpha</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beierlein et al.</td>
<td>2013</td>
<td>Allgemeine Selbstwirksamkeit Kurzskala (ASKU)</td>
<td>3</td>
<td>5-stufig</td>
<td>(\omega = 0.81)</td>
<td>539 + 338</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\omega = 0.84)</td>
<td>741</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\omega = 0.86)</td>
<td>1134</td>
</tr>
</tbody>
</table>

Tabelle 9: Übersicht über etablierte Skalen zum Konstrukt Eigene Kompetenz (eigene Darstellung)

4.5 Soziales Umfeld

Diese subjektive Norm ergibt sich in unserem Forschungskontext daher aus der Reputation der Technik (bzw. des Anbieters) einerseits, aus den Einflüssen des sozialen Umfelds (also Empfehlungen von Freunden oder Bekannten) andererseits. Unsere Hypothesen lauten daher:

\(H8a \) Das soziale Umfeld hat einen positiven Einfluss auf die wahrgenommene Nutzerfreundlichkeit von Apps.

\(H8b \) Das soziale Umfeld hat einen positiven Einfluss auf den wahrgenommenen Nutzen von Apps.
H8c Das soziale Umfeld hat einen positiven Einfluss auf das Vertrauen in Apps (in allen drei Dimensionen).

Die Reliabilität der Skalen ist in Kombination mit ihrer Passung auf unseren Forschungsgegenstand bei Bhattacharjee recht hoch. Ob dieser inhaltlichen Nähe und des ebenfalls im IT-Bereich verorteten Kontextes haben wir uns daher entschieden, die von uns verwendete Skala an die seine anzulehnen.

<table>
<thead>
<tr>
<th>Autor/Marke</th>
<th>Jahr</th>
<th>Titel</th>
<th>Items</th>
<th>Skala</th>
<th>Alpha</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bhattacharjee</td>
<td>2000</td>
<td>Social influence</td>
<td>3</td>
<td>7-stufig</td>
<td>0,818</td>
<td>172</td>
</tr>
<tr>
<td>Otto/Bacherle</td>
<td>2011</td>
<td>Politisches Interesse Kurzskala</td>
<td>5</td>
<td>5-stufig</td>
<td>0,63-0,87</td>
<td>450</td>
</tr>
<tr>
<td>Przybylski et al.</td>
<td>2013</td>
<td>Fear of Missing Out Scale</td>
<td>10</td>
<td>5-stufig</td>
<td>0,87</td>
<td>1013</td>
</tr>
<tr>
<td>Beierlein et al.</td>
<td>2014</td>
<td>Political Efficacy Kurzskala</td>
<td>4</td>
<td>5-stufig</td>
<td>0,83-0,92</td>
<td>0,69-0,72</td>
</tr>
</tbody>
</table>

Tabelle 10: Skalen zu den Subkonstrukten soziales Umfeld und politisches Interesse (eigene Darstellung)

4.6 Datenschutzsensibilität

Eine hohe Sensibilität für Fragen des Datenschutzes kann ein Faktor sein, der das Entstehen von Vertrauen hemmt. Schelewsky et al. (2014) identifizierten zudem die Datenschutzsensibilität als einen wesentlichen Faktor, der die Akzeptanz von IT-Dienstleistungen beeinträchtigt: Personen mit einer niedrigeren Datenschutzsensibilität sind eher bereit Anwendungen zu nutzen, die auf ihre Daten zugreifen, sofern sie einen nennenswerten Nutzen erkennen können. Daher soll im Folgen die Datenschutzsensibilität als eigenständiger Einflussfaktor behandelt und nicht mit anderen Skalen verknüpft werden. Unsere Hypothesen lauten daher:

H9a Die Datenschutzsensibilität hat einen negativen Einfluss auf die wahrgenommene Nutzerfreundlichkeit von Apps.
Die Datenschutzsensibilität hat einen negativen Einfluss auf den wahrgenommenen Nutzen von Apps.

Die Datenschutzsensibilität hat einen negativen Einfluss auf das Vertrauen in Apps (in allen drei Dimensionen).

Die von Schelewsky et al. (2014) entwickelte Skala mit vier Items hat eine hohe Reliabilität und wird daher auch in der vorliegenden Studie verwendet.

Tabelle 11: Skalen zum Subkonstrukt Vertrauen in Datenschutz (eigene Darstellung)

4.7 Skalen, Hypothesen und das erweiterte Forschungsmodell

Tabelle 12 zeigt eine Übersicht aller Skalen, die in unserer Studie verwendet werden; sie wurden teilweise modifiziert, auf die hier verfolgte Fragestellung angepasst und zudem dahingehend vereinheitlicht, dass sie fünf Stufen in aufsteigender Reihenfolge (von „trifft nicht zu“ bis „trifft zu“) enthalten.

Tabelle 12: Konstrukte und Skalen (eigene Darstellung, in Klammern Items nach Weglassung)

Mithilfe dieser Konstrukte sollen folgende Hypothesen getestet werden, die in Tabelle 13 noch einmal zusammengefasst sind.
vermutete positive/ negative Wirkung auf …

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Konstrukt</th>
<th>PEOU</th>
<th>PU</th>
<th>Vertrauen</th>
<th>Bereitschaft zur Verhaltensänderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Wahrgenommene Nutzerfreundlichkeit (PEOU)</td>
<td>pos.</td>
<td></td>
<td>pos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wahrgenommener Nutzen (PU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td></td>
<td></td>
<td>pos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wahrgenommene Nutzerfreundlichkeit (PEOU)</td>
<td></td>
<td></td>
<td></td>
<td>pos.</td>
</tr>
<tr>
<td>H3</td>
<td>Nutzungshäufigkeit / Erfahrung</td>
<td>pos.</td>
<td></td>
<td>pos.</td>
<td>pos.</td>
</tr>
<tr>
<td>H4</td>
<td>Negative Erfahrungen</td>
<td>neg.</td>
<td>neg.</td>
<td>neg.</td>
<td></td>
</tr>
<tr>
<td>H5</td>
<td>Technikaffinität</td>
<td>pos.</td>
<td></td>
<td>pos.</td>
<td></td>
</tr>
<tr>
<td>H6</td>
<td>Kontrolle (intern / extern)</td>
<td>pos.</td>
<td></td>
<td>pos.</td>
<td>pos.</td>
</tr>
<tr>
<td>H7</td>
<td>Kompetenzerwartungen</td>
<td>pos.</td>
<td></td>
<td>pos.</td>
<td>pos.</td>
</tr>
<tr>
<td>H8</td>
<td>Soziales Umfeld</td>
<td>pos.</td>
<td></td>
<td>pos.</td>
<td>pos.</td>
</tr>
<tr>
<td>H9</td>
<td>Datenschutzsensibilität</td>
<td>neg.</td>
<td>neg.</td>
<td>neg.</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 13: Übersicht der Hypothesen (eigene Darstellung)

Abbildung 16 zeigt unser Forschungsmodell und die in ihm enthaltenen Hypothesen in grafischer Form. Dabei sind unterhalb der Konstruktnamen die im Rahmen dieser Studie verwendeten Skalen zu sehen. Rot geschriebene Skalen wurden für diese Erhebung modifiziert.

Abbildung 16: Das erweiterte Forschungsmodell mit externen Faktoren (eigene Darstellung)
5 Deskriptive Analyse

5.1 Design der Studie und Pretests

5.2 Das Sample

Bei dieser großzahligen Befragung konnte dann ein Sample von 1028 gültigen Datensätzen erzielt werden, welches nach den Merkmalen „Alter“, „Geschlecht“ und „Bundesland“ quotiert wurde, um so eine annähernde Repräsentativität zu erreichen.5 Die Befragten waren dabei im Durchschnitt 42 Jahre alt und identifizierten sich zu 48,6 Prozent mit dem männlichen, sowie zu 51,4% mit dem weiblichen Geschlecht.

Hinsichtlich des Bildungsniveaus gaben 13 Prozent der Befragten an als höchsten Bildungsabschluss einen Hauptschulabschluss zu besitzen. 38,8 Prozent der Befragten erreichten die Mittlere Reife, 11,7 Prozent das Fachabitur, 15,9 Prozent die allgemeine Hochschulreife (Abitur). Weitere 19,8 Prozent der Befragten gaben an, ein Hochschulstudium abgeschlossen zu haben.

Hinsichtlich des Einkommens gaben 21,1 Prozent der Befragten an, dass ihr persönliches monatliches Nettoeinkommen zwischen Null und 1300€ liegt. 36,4 Prozent der Befragten verfügen im Monat über ein Einkommen, welches zwischen 1301 und

5 Da bei Online-Befragungen grundsätzlich nicht alle Teile der Bevölkerung erreicht werden können, ist eine tatsächliche Repräsentativität hier nicht zu erreichen.
2600€ liegt. Bei 17,7 Prozent sind es 2601 bis 3600€, bei weiteren 10,1 Prozent liegt das persönliche Einkommen zwischen 3601 und 5000€. 4,4 Prozent der Befragten gaben an, monatlich über mehr als 5000€ verfügen zu können, weitere 10,3 Prozent der Befragten machten zu ihrem Einkommen keine Angabe.

5.3 Die Konstrukte des erweiterten TAM-Modells

Bereitschaft zur Verhaltensänderung

Route ändern oder nicht?

Stellen Sie sich vor, Ihre Navi-App zeigt auf der gewählten Route einen Stau an und bietet eine Alternative an, die 6 Minuten schneller ist.

Abbildung 17: Navigations-Szenario 1 (vor der Fahrt)
Anschließend wurden zwei Szenarien aus dem Gesundheitsbereich (ein Schritt- und ein Kalorienzähler) simuliert, welche einen Anreiz dazu gaben, sich mehr zu bewegen bzw. weniger Kalorien zu sich zu nehmen.

Abbildung 18: Navigations-Szenario 2 (während der Fahrt)

Anschließend wurden zwei Szenarien aus dem Gesundheitsbereich (ein Schritt- und ein Kalorienzähler) simuliert, welche einen Anreiz dazu gaben, sich mehr zu bewegen bzw. weniger Kalorien zu sich zu nehmen.

Mehr bewegen oder nicht?
Sie haben sich das Ziel gesetzt 10.000 Schritte am Tag zu laufen. Ihre Fitness-App (Schrittzähler) zeigt folgende Daten (Strecke pro Tag) für die letzten sieben Tage an. Demnach haben Sie diese Woche nur 72 Prozent Ihres Ziels erreicht.

Abbildung 19: Gesundheits-Szenario (Sport)
Zuletzt wurde eine Wetter-App mit einer regnerischen Prognose für die folgenden Tage abgebildet, um die Proband*innen mit der Frage zu konfrontieren, ob sie einen Regenschirm mitnehmen würden.

Regenschirm mitnehmen oder nicht?

Sie planen morgen einen Aufenthalt an einem Ort, für den die Wettervorhersage folgendes Szenario anzeigt:

Abbildung 21: Wetter-Szenario

In allen fünf Fällen wurde die Bereitschaft zur Verhaltensänderung mit einer fünfstufigen Skala erhoben, die die Antwortmöglichkeiten „mit Sicherheit ja“, „eher wahrscheinlich“, „weiß nicht“, „eher unwahrscheinlich“ und „bestimmt nein“ enthielt, und zwar in Bezug auf die Fragen „Route ändern“, „Mehr bewegen“, „Weniger essen“ und „Regenschirm mitnehmen“.
Tabelle 14: Bereitschaft zur Verhaltensänderung (in Prozent – Werte über dem Durchschnitt sind fett gesetzt)

Die deskriptive Auswertung der Daten in Tabelle 14 zeigt, dass die Bereitschaft zur Verhaltensänderung bei Wetter-Apps am größten ist (Mittelwert 4,1), bei Gesundheits-Apps am geringsten (Mittelwert 3,4 bzw. 3,2). Dort finden sich auch die größten Gruppen der Unentschiedenen, die „weiß nicht“ (3) angekreuzt haben. Navigations-Apps weisen ebenfalls einen hohen Mittelwert von 4,0 bzw. 3,8 auf; in beiden Szenarien entschieden sich 78,1 bzw. 69,6 Prozent der Befragten dafür, den Hinweisen des Navigationssystems zu folgen, während sich 11,3 bzw. 12,4 Prozent dagegen entschieden.

Abbildung 22: Bereitschaft zur Verhaltensänderung (Angaben in Prozent)
Wie Abbildung 22 ebenfalls zeigt, ist die Bereitschaft zur Verhaltensänderung aufgrund von App-Empfehlungen insgesamt recht hoch, variiert aber bei den drei untersuchten App-Typen teils erheblich.

Wahrgenommene Nutzerfreundlichkeit (PEOU)

Dieses Konstrukt wurde mit sieben Items und einer fünfstufigen Skala (1 = trifft nicht zu, 5 = trifft zu) erhoben (vgl. Abbildung 23).

Abbildung 23: Skala "Wahrgenommene Nutzerfreundlichkeit" (in Anlehnung an Davis 1989)

Wie die Übersicht in Tabelle 15 zeigt, sind die Gütemaße für dieses Konstrukt gut bis sehr gut. Mit Hilfe der Faktorenanalyse überprüft man, ob die Items auf einen Faktor laden, also inhaltlich zusammenpassen; der KMO-Wert von 0,790 (bei einer erklärten Varianz von 43,72%) kann als ziemlich gut gelten.6 Bei manchen der untersuchten Skalen wurden Items mit Faktorladungen unter 0,5 gemäß Bortz und Schuster (vgl. 2010, S. 422) unterdrückt und von der weiteren Analyse ausgeschlossen; in der Kommentarspalte finden sich die entsprechenden Hinweise. Cronbach’s Alpha misst zudem die Reliabilität des Konstrukts, also dessen interne Konsistenz.7 Im Fall von PEOU beträgt dieser 0,778 und kann somit also gut gelten.

6 Faktorwerte größer als 0,5 gelten bei der hier vorhandenen Anzahl an Items als akzeptabel, größer 0,6 als gut und größer 0,7 als ziemlich gut (vgl. Bortz und Schuster 2010, S. 422).

7 Ein Cronbach’s Alpha größer als 0,7 gilt als akzeptabel, ab 0,8 als gut. Allerdings gilt erst ein Wert kleiner 0,5 als inakzeptabel, so dass typischerweise auch Werte von 0,6 gerade noch akzeptiert werden (George und Mallery 2016, S. 240).
Wie Abbildung 24 zu entnehmen ist, wird die Nutzerfreundlichkeit von Apps durchweg hoch eingeschätzt; 65,9 Prozent der Befragten gaben „trifft eher zu“ (4) bzw. „trifft zu“ (5) an, und nur 2,5 Prozent waren komplett unzufrieden (1 bzw. 2).

Wahrgenommener Nutzen (PU)

Dieses Konstrukt wurde mit acht Items und einer fünfstufigen Skala erhoben (vgl. Abbildung 25).
Apps helfen mir, meine Ziele klarer zu definieren.
Apps helfen mir, meine Ziele schneller zu erreichen.
Apps erleichtern mir den Alltag.
Apps helfen mir, Aufgaben schneller zu erledigen.
Apps helfen mir, Informationen leichter zu finden.
Durch die Nutzung von Apps spare ich Zeit.
Mithilfe von Apps kann ich meine Daten besser organisieren.
Ich finde Apps nützlich.

Abbildung 25: Skala „Wahrgenommener Nutzen“ (in Anlehnung an Davis 1993)

Diese Skala hat ebenfalls gute Werte; sie weist ein KMO von 0,902 auf bei einem einzigen Faktor (Varianz 60,67%), und Cronbachs Alpha beträgt 0,907. Zudem betrachten die Befragten Apps überwiegend als nützlich – allerdings mit nicht ganz so hohen Werten wie bei der Nutzerfreundlichkeit: 61,2 Prozent der Befragten gaben „trifft eher zu“ (4) bzw. „trifft zu“ (5) an, und nur ein kleiner Teil von 4,0 Prozent war komplett unzufrieden (1 bzw. 2) (vgl. Abbildung 26).

Abbildung 26: Wahrgenommener Nutzen von Apps (Angaben in Prozent)

Vertrauen in Apps

Die drei Dimensionen des Vertrauens in Apps wurden über drei getrennte Skalen abgefragt (vgl. Abbildung 27).

8 Die Nachkomma-Werte ergeben sich daraus, dass hier mit einem additiven Index gearbeitet wurde, der den Median aus den Antworten zu unterschiedlichen Items ermittelt.
Dispositionales Vertrauen

Ich bin davon überzeugt, dass die meisten Menschen gute Absichten haben. Heutzutage kann man sich auf niemanden mehr verlassen. Im Allgemeinen kann man den Menschen vertrauen.

Institutionelles Vertrauen

Interpersonelles Vertrauen

Abbildung 27: Skalen Vertrauen in Apps

Wie Abbildung 28 zeigt, sind die Ergebnisse wenig spektakulär. Ein relevanter Teil der Befragten hat sich durch die Mitte hindurchlaviert und „teils/teils (3)“ angekreuzt. Dies belegen auch die Mittelwerte, die bei 3,1 für das dispositionale Vertrauen, also die allgemeine Grundhaltung, und bei jeweils 3,2 für das institutionelle Vertrauen (in den Datenschutz) und das interpersonelle Vertrauen (in App-Anbieter)
liegen. Interessant hierbei ist dennoch ein gewisser Unterschied, welcher sich hinsichtlich der Verteilung der Werte zeigt: Das interpersonale Vertrauen scheint vor allem in den niedrigen Ausprägungen deutlich weniger zu vertreten sein als die beiden übrigen Vertrauensdimensionen. Dies deutet darauf hin, dass Nutzer*innen ihre Apps durchaus in gewissem Maße dem Vertrauen nach selektieren, sodass ihr Vertrauen in die Anbieter der von ihnen genutzten Apps relativ hoch ist.

Korrelationsanalysen

Damit sind die vier Grundbestandteile des erweiterten TAM-Modells beschrieben, und es ist nunmehr möglich, die Hypothesen H1 und H2 zu überprüfen, die sich auf die Zusammenhänge zwischen diesen vier Konstrukten beziehen (vgl. Tabelle 16, die symmetrisch angelegt ist und daher nur oberhalb der Diagonale ausgewertet wird).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BV</td>
<td>1</td>
<td>0,099**</td>
<td>0,224**</td>
<td>0,085**</td>
<td>0,133**</td>
<td>0,195**</td>
</tr>
<tr>
<td>PEOU</td>
<td>0,099**</td>
<td>1</td>
<td>0,479**</td>
<td>0,088**</td>
<td>0,082**</td>
<td>0,186**</td>
</tr>
<tr>
<td>PU</td>
<td>0,224**</td>
<td>0,479**</td>
<td>1</td>
<td>0,178**</td>
<td>0,273**</td>
<td>0,346**</td>
</tr>
<tr>
<td>Vert. disp.</td>
<td>0,085**</td>
<td>0,088**</td>
<td>0,178**</td>
<td>1</td>
<td>0,370**</td>
<td>0,396**</td>
</tr>
<tr>
<td>Vert. inst.</td>
<td>0,133**</td>
<td>0,082**</td>
<td>0,273**</td>
<td>0,370**</td>
<td>1</td>
<td>0,562</td>
</tr>
<tr>
<td>Vert. inter.</td>
<td>0,195**</td>
<td>0,186**</td>
<td>0,346**</td>
<td>0,396**</td>
<td>0,562**</td>
<td>1</td>
</tr>
</tbody>
</table>

Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant.

Tabelle 16: Korrelationsanalyse

Korrelationsanalysen bestätigen Zusammenhänge zwischen voneinander unabhängigen Faktoren; sie sagen allerdings nichts über die Wirkungsrichtung aus. Die Daten belegen zunächst den engen Zusammenhang zwischen den drei Vertrauensdimensionen, die hochsignifikant miteinander korrelieren. Personen, die eine allgemeine Vertrauensdisposition besitzen, haben demzufolge auch ein Vertrauen in Anbieter (interpersonal 0,396**) und in die gesetzlichen Regelungen zum Datenschutz (institutionell 0,37**). Interessanterweise korreliert das interpersonale Vertrauen sichtbar stärker mit den drei Variablen Wahrgenommene Nutzerfreundlichkeit (PEOU), Wahrgenommener Nutzen (PU) und Bereitschaft zur Verhaltensänderung als das institutionelle Vertrauen. Auch das institutionelle Vertrauen korreliert stärker mit den Variablen PU und Bereitschaft zur Verhaltensänderung als das institutionelle Vertrauen. Dies belegt, dass die allgemeine Disposition zu vertrauen unter Umständen zwar ausreichen kann, um eine App als nutzerfreundlich zu empfinden, es muss aber offenbar ein konkreteres Vertrauensverhältnis – entweder in die Datenschutz-Institutionen oder in den jeweiligen Anbieter – existieren, damit sie auch als nützlich empfunden wird und man bereit ist, sein Verhalten zu ändern.

Ein weiterer, auffälliger Befund besteht darin, dass der wahrgenommene Nutzen (PU 0,224**) deutlich stärker als die wahrgenommene Nutzerfreundlichkeit (PEOU 0,099**) mit der Bereitschaft zur Verhaltensänderung korreliert. Die Einfachheit der Bedienung korreliert zudem – wie im Original-TAM – mit dem wahrgenommenen Nutzen (.479**). Bei genauerer Betrachtung verwundert dies jedoch nicht: Eine App, die sich leicht bedienen lässt, wird offenbar zwar als nützlich empfunden; aber
die Bereitschaft, die Handlungsempfehlungen der App zu berücksichtigen und das eigene Verhalten entsprechend zu ändern, speist sich in erster Linie aus deren Nutzen und nicht aus deren Bedienbarkeit. Die Route muss schon kürzer sein, die Fitness sich verbessern und der Regenschirm nicht umsonst mitgenommen worden sein.

Die Korrelationsanalyse liefert also erste Hinweise darauf, welche Hypothesen sich als tragfähig erweisen könnten und welche nicht (vgl. Tabelle 17).

Die Hypothesen H1a, H1b und H1c werden demnach vermutlich bestätigt werden können.
Beim Hypothesen-Set H2a bis H2c erhärtet sich der Verdacht, dass insbesondere das interpersonal Vertrauen eine wichtige Rolle spielt, das dispositionale Vertrauen hingegen nicht. Wir werden später in Kapitel 6 ein Strukturgleichungsmodell vorstellen, das diese Zusammenhänge detaillierter beleuchten wird.

<table>
<thead>
<tr>
<th>Hypothese</th>
<th>Konstrukt</th>
<th>Konstrukt</th>
<th>Korrelation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1a</td>
<td>Wahrgenommene Nutzerfreundlichkeit (PEOU)</td>
<td>Bereitschaft zur Verhaltensänderung</td>
<td>0,099**</td>
</tr>
<tr>
<td>H1b</td>
<td>Wahrgenommener Nutzen (PU)</td>
<td>Bereitschaft zur Verhaltensänderung</td>
<td>0,224**</td>
</tr>
<tr>
<td>H1c</td>
<td>Wahrgenommene Nutzerfreundlichkeit (PEOU)</td>
<td>Wahrgenommener Nutzen (PU)</td>
<td>0,479**</td>
</tr>
<tr>
<td>H2a</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>Bereitschaft zur Verhaltensänderung</td>
<td>0,085**, 0,133**, 0,195**</td>
</tr>
<tr>
<td>H2b</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>Wahrgenommener Nutzen (PU)</td>
<td>0,178**, 0,273**, 0,346**</td>
</tr>
<tr>
<td>H2c</td>
<td>Wahrgenommene Nutzerfreundlichkeit (PEOU)</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>0,088**, 0,082**, 0,186**</td>
</tr>
</tbody>
</table>

Tabelle 17: Korrelationen der vier Kernfaktoren des erweiterten TAM-Modells

5.4 Die externen Faktoren

Erfahrungen mit Apps

Weiter wird ersichtlich, dass Apps sehr unterschiedlich genutzt wurden: Über 90 Prozent der Befragten gaben an, Navigations-Apps zu nutzen, bei Wetter-Apps
waren es ebenfalls über 90 Prozent. Alle anderen Werte liegen deutlich darunter; Gesundheits-Apps nutzen demnach nur gut ein Drittel der befragten Probanden.

<table>
<thead>
<tr>
<th>App-Typ</th>
<th>N</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
<td>950</td>
<td>92,4</td>
</tr>
<tr>
<td>Sport/Fitness</td>
<td>541</td>
<td>52,6</td>
</tr>
<tr>
<td>Gesundheit/Ernährung</td>
<td>374</td>
<td>36,4</td>
</tr>
<tr>
<td>Wetter</td>
<td>946</td>
<td>92,0</td>
</tr>
</tbody>
</table>

Tabelle 18: Nutzung von Apps nach Typ

Die meisten Befragten (37,4%) gaben an, zwei der angegebenen vier App-Typen zu nutzen; sämtliche vier Typen wurden dennoch von einer relativ hohen Anzahl von 26 Prozent der Befragten genutzt.\(^9\) Es zeigt sich also, dass die Befragten deutlich dazu tendieren, mehr als nur einen der abgefragten App-Typen zu nutzen (vgl. Tabelle 19).

<table>
<thead>
<tr>
<th>Anzahl Apps</th>
<th>N</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78</td>
<td>7,6</td>
</tr>
<tr>
<td>2</td>
<td>384</td>
<td>37,4</td>
</tr>
<tr>
<td>3</td>
<td>299</td>
<td>29,1</td>
</tr>
<tr>
<td>4</td>
<td>267</td>
<td>26,0</td>
</tr>
<tr>
<td>Summe</td>
<td>1028</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 19: Nutzung von Apps nach Anzahl\(^10\)

\(^9\) Da für die beiden von uns untersuchten Routenplanungs-Szenario lediglich eine einzige App erforderlich ist, diskutieren wir hier lediglich vier App-Typen.

\(^10\) Aufgrund von Rundungen kommt es zu einem Überhang von 0,1 bei der Summe der Prozentwerte.

Die hohe Nutzungszahl bei Sport- und bei Gesundheitsapps erklärt sich vermutlich daraus, dass die Personen (36,4% bzw. 52,6% der Befragten), die diese Sorte Apps nutzen, sich aus dezidierten Gründen – z.B. wegen Gewichtsproblemen – für deren Installation entschieden haben und sie daher auch bewusst und intensiv nutzen. Das auf den ersten Blick geringe Interesse an Navigations-Apps dürfte dabei vor allem daran liegen, dass die meisten Menschen nicht mehrmals täglich Wege zurücklegen, für die sie eine Routenplanung benötigen.

Abbildung 30: Items zur Erhebung negativer Erfahrungen

Obwohl – oder weil? – Wetter-Apps bei vielen Probanden (N=946) installiert sind und am häufigsten genutzt werden, verzeichnen sie die meisten negativen Erfahrungen mit 45,5 Prozent Nennungen im Bereich von „gelegentlich“ (3) bis „häufig“ (4)
(vgl. Tabelle 20), wobei „häufig“ für täglich steht. Ein ähnliches Bild zeigt sich bei den Sport- und Gesundheitsapps, welche ebenfalls überwiegend täglich genutzt werden. Das Phänomen der negativen Erfahrungen scheint also mit der Häufigkeit der Nutzung zusammenzuhängen, was dadurch gestützt wird, dass bei Navigationsapps nur 39,5 Prozent der Nennungen im Bereich „gelegentlich“ (3) bis „häufig“ (4) liegen.

<table>
<thead>
<tr>
<th>App-Typ</th>
<th>Nie (1)</th>
<th>Selten (2)</th>
<th>Gelegentlich (3)</th>
<th>Häufig (4)</th>
<th>Ständig (5)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
<td>11,9</td>
<td>47,1</td>
<td>30,2</td>
<td>9,3</td>
<td>1,6</td>
<td>950</td>
</tr>
<tr>
<td>Sport/ Gesundheit</td>
<td>20,0</td>
<td>32,5</td>
<td>32,5</td>
<td>12,7</td>
<td>2,2</td>
<td>624</td>
</tr>
<tr>
<td>Wetter</td>
<td>13,6</td>
<td>39,2</td>
<td>33,9</td>
<td>11,6</td>
<td>1,6</td>
<td>946</td>
</tr>
<tr>
<td>Durchschnitt</td>
<td>15,2</td>
<td>39,6</td>
<td>32,2</td>
<td>11,2</td>
<td>1,8</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 20: Negative Erfahrungen mit Apps (Angaben in Prozent, Werte über dem Durchschnitt sind fett gesetzt)

Tabelle 21 belegt zunächst, dass die drei von uns erhobenen Dimensionen negativer Erfahrungen miteinander stark korrelieren: Wer schlechte Erfahrungen mit Navigationsystemen gemacht hat, macht diese ebenfalls mit anderen App-Typen (0,720**, 0,611**). Es könnten also durchaus auch persönlichkeitspezifische Merkmale sein, die hier eine Rolle spielen und dazu führen, dass man mit jedem App-Typ negative Erfahrungen macht. Zudem gibt es offenbar einen Zusammenhang zwischen der Häufigkeit der App-Nutzung und den drei Formen des Vertrauens (0,115**, 0,162**, 0,167**) wie auch der wahrgenommenen Nutzerfreundlichkeit (0,062**) und dem wahrgenommenen Nutzen (0,223**). Wer häufiger Apps nutzt, kommt mit deren Bedienung besser klar, findet sie nützlicher und vertraut ihnen mehr. Dies liefert einen ersten Hinweis darauf, dass Vertrauen, Häufigkeit der Nutzung und negative Erfahrung (wie von uns angenommen) untereinander einige bedeutsame Zusammenhänge aufweisen. Die Hypothesen H3a, b und c, welche der Nutzungshäufigkeit

52
einen Einfluss auf die wahrgenommene Nutzerfreundlichkeit, den wahrgenommenen Nutzen und das Vertrauen unterstellen, können also vermutlich bestätigt werden.

<table>
<thead>
<tr>
<th>Häufigkeit</th>
<th>Negative Erfahrungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Navigation</td>
</tr>
<tr>
<td>VERT_dispositional</td>
<td>0,115**</td>
</tr>
<tr>
<td>VERT_institutionell</td>
<td>0,162**</td>
</tr>
<tr>
<td>VERT_interpersonal</td>
<td>0,167**</td>
</tr>
<tr>
<td>PEOU</td>
<td>0,062*</td>
</tr>
<tr>
<td>PU</td>
<td>0,223**</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>1</td>
</tr>
<tr>
<td>Negative Erf. Navi</td>
<td>0,0251**</td>
</tr>
<tr>
<td>Negative Erf. Ges</td>
<td>0,163**</td>
</tr>
</tbody>
</table>

Tabelle 21: Korrelationen in Bezug auf das Vertrauen (Ausschnitt aus der Gesamt-Matrix)

Inwiefern die Nutzungshäufigkeit sowie negative Erfahrungen mit Apps einen Einfluss auf das Vertrauen und die Bereitschaft zur Verhaltensänderung haben, werden wir in Kapitel 6 anhand eines Strukturgleichungsmodells noch einmal eingehend analysieren und diskutieren.

Technikaffinität

Dieses Konstrukt wurde mit sieben Items und einer fünfstufigen Skala (1 = trifft nicht zu, 5 = trifft zu) erhoben (vgl. Abbildung 32). Die Gütemaße für dieses Konstrukt sind, wenn man die Items 1, 2 und 7 ausschließt, akzeptabel bis gut; der KMO-Wert beträgt 0,732 (bei einer erklärten Varianz von 56,39%), Cronbach’s Alpha liegt bei 0,739.

Abbildung 32: Skala "Technikaffinität" (Quelle: Weyer et al. 2015)

Ein additiver Index, der die Antworten aller fünf verwerteten Items zusammenfasst, zeigt ein positives Bild: Knapp 45 Prozent aller Befragten schätzen sich als technikaffin (4 bzw. 5) ein (vgl. Tabelle 22).

<table>
<thead>
<tr>
<th>Technikavers (1)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Technikaffin (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3</td>
<td>10,5</td>
<td>42,6</td>
<td>32,4</td>
<td>12,2</td>
</tr>
</tbody>
</table>

Tabelle 22: Technikaffinität (additiver Index) in Prozent

Ein Blick auf die Korrelationen (vgl. Tabelle 23) zeigt zudem, dass Technikaffinität offenbar ein Faktor ist, der stark mit der wahrgenommenen Nutzerfreundlichkeit und dem wahrgenommenen Nutzen zusammenhängt, nicht aber mit dem Vertrauen (in allen drei Dimensionen).

<table>
<thead>
<tr>
<th>Technikaffinität</th>
<th>PEOU</th>
<th>PU</th>
<th>VERT_disp</th>
<th>VERT_inst</th>
<th>VERT_inter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,331**</td>
<td>0,284**</td>
<td>-0,035</td>
<td>-0,024</td>
<td>0,016</td>
</tr>
</tbody>
</table>

Tabelle 23: Korrelationen in Bezug auf das Vertrauen (Ausschnitt der Gesamt-Matrix)

Technikaffine Personen, die neuer Technik mit einer positiven Grundeinstellung begegnen, haben offenbar wenig Probleme, die Bedienung von Apps zu verstehen (0,331**), und sehen diese zudem als nützlich an (0,284**). Es spricht also Einiges dafür, dass die Hypothesen H5a und H5b bestätigt werden können, die Hypothese H5c hingegen abgelehnt werden muss. Technikaffinität und Vertrauen stehen offenbar in keinem statistisch nachweisbaren Zusammenhang.

Kontrollüberzeugungen

Dieses Konstrukt wurde mit sechs Items und einer fünfstufigen Skala gemessen, wobei die ersten drei Items auf die interne, die letzten drei auf die externe Kontrolle verweisen (vgl. Abbildung 33).

Für die internen Kontrollüberzeugungen beträgt der KMO-Wert 0,690, sodass es als gut einzuschätzen ist (bei einer erklärten Varianz von 66,285%) und Cronbach’s Alpha mit 0,743 als akzeptabel gelten kann. Bei den externen Kontrollüberzeugungen liegt der KMO-Wert bei fast ebenso guten 0,659 (Varianz von 64,240%) und Cronbach’s Alpha bei 0,722.

Abbildung 33: Skala "Kontrollüberzeugungen"

Auch hier attestieren die Befragten sich selbst überwiegend (77,1% für die Werte 4 und 5) eine hohe interne Kontrolle, also die Fähigkeit, den Lauf der Dinge durch eigene Entscheidungen und eigenes Handeln beeinflussen zu können (vgl. Tabelle 24).

<table>
<thead>
<tr>
<th>Geringe interne Kontrolle (1)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Hohe interne Kontrolle (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2</td>
<td>1,7</td>
<td>21,0</td>
<td>48,4</td>
<td>28,7</td>
</tr>
</tbody>
</table>

Tabelle 24: Interne Kontrollüberzeugungen (additiver Index) in Prozent

Passend dazu zeigen sich bei den externen Kontrollüberzeugungen im hohen Bereich eher geringere Werte. Die Befragten haben demnach weniger das Gefühl, von außen fremdgesteuert zu werden, wobei ausdrücklich zu betonen ist, dass die Bereiche der internen und externen Kontrollüberzeugungen nicht überschneidungsfrei nebeneinander liegen, sondern durchaus beide Eigenschaften innerhalb einer Person verankert sein können.

<table>
<thead>
<tr>
<th>Geringe externe Kontrolle (1)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Hohe externe Kontrolle (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,4</td>
<td>18,4</td>
<td>38,8</td>
<td>28,8</td>
<td>8,6</td>
</tr>
</tbody>
</table>

Tabelle 25: Externe Kontrollüberzeugungen (additiver Index) in Prozent

Ähnlich wie beim Faktor „Technikaffinität“ zeigt die Korrelationsanalyse auch hier, dass die internen Kontrollüberzeugungen stark mit der wahrgenommenen Nützlichkeit (0,331**) und dem wahrgenommenen Nutzen (0,348**) korrelieren. Darüber hinaus korrelieren die internen Kontrollüberzeugungen aber auch mit den drei Dimensionen des Vertrauens. Die externen Kontrollüberzeugungen korrelieren zwar ebenfalls mit der wahrgenommenen Nutzerfreundlichkeit, nicht aber mit dem wahrgenommenen Nutzen. Hinsichtlich des Vertrauens zeigt sich in allen drei Dimensionen eine (erwartungsge- maße) negative Korrelation.

<table>
<thead>
<tr>
<th></th>
<th>PEOU</th>
<th>PU</th>
<th>VERT_disp</th>
<th>VERT_inst</th>
<th>VERT_inter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interne Kontrolle</td>
<td>0,331**</td>
<td>0,348**</td>
<td>0,099**</td>
<td>0,146**</td>
<td>0,200**</td>
</tr>
<tr>
<td>Externe Kontrolle</td>
<td>0,200**</td>
<td>-0,012</td>
<td>-0,144**</td>
<td>-0,228**</td>
<td>-0,268**</td>
</tr>
</tbody>
</table>

Tabelle 26: Korrelationen in Bezug auf Vertrauen (Ausschnitt der Gesamt-Matrix)
Die Interpretation dieser Daten ist ähnlich wie bereits im Fall der Technikaffinität: Personen, die davon überzeugt sind, die Dinge selbst im Griff zu haben, finden Apps sowohl nützlich als auch einfach zu bedienen. Dieses starke Selbstbewusstsein hat ebenso mit dem Vertrauen in generalisierte Dritte (also Menschen im Allgemeinen), den institutionellen Rahmen (in diesem Falle den Datenschutz), wie auch spezifische Dritte (z.B. in App-Anbieter) zu tun. Die Hypothesen H6a, H6b und H6c können also vermutlich bestätigt werden.

Kompetenzerwartungen

Dieses Konstrukt wurde mit drei Items und einer fünfstufigen Skala gemessen (vgl. Abbildung 34). Der KMO-Wert von 0,721 ist ziemlich gut (bei einer erklärten Varianz von 76,205%), und Cronbach’s Alpha ist mit 0,844 ebenfalls gut.

Abbildung 34: Skala "Kompetenzerwartungen"

Wiederum zeigt sich ein ähnliches Bild wie schon bei den zuvor behandelten Faktoren. Die überwiegende Zahl der Probanden (77,8% für die Werte 4 und 5) hat hohe Kompetenzerwartungen, schätzt also die eigene Fähigkeit, Probleme zu meistern, hoch ein (vgl. Tabelle 27).

<table>
<thead>
<tr>
<th>Geringe Kompetenz (1)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Hohe Kompetenz (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,3</td>
<td>1,8</td>
<td>20,0</td>
<td>49,6</td>
<td>28,2</td>
</tr>
</tbody>
</table>

Tabelle 27: Kompetenzerwartungen (additiver Index) in Prozent

Auch hier gibt es eine starke Korrelation der eigenen Kompetenzerwartungen sowohl mit der wahrgenommenen Nützlichkeit (0,389**) als auch mit dem wahrge nommenen Nutzen (0,342**).

<table>
<thead>
<tr>
<th>Kompetenz</th>
<th>PEOU</th>
<th>PU</th>
<th>VERT_disp</th>
<th>VERT_inst</th>
<th>VERT_inter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,389**</td>
<td>0,342**</td>
<td>0,144**</td>
<td>0,155**</td>
<td>0,233**</td>
</tr>
</tbody>
</table>

Tabelle 28: Korrelationen in Bezug auf Vertrauen (Ausschnitt der Gesamt-Matrix)

Personen, die sich selbst eine Menge zutrauen, kommen offenbar nicht nur mit der Bedienung von Apps gut klar, sondern können auch einen Nutzen aus ihnen ziehen. Zudem gibt es hier einen Zusammenhang zwischen den Kompetenzerwartungen und dem Vertrauen in allen drei Dimensionen (0,144**, 0,155**, 0,233**). Eine hohe Einschätzung der eigenen Kompetenz geht offenbar mit einer vertrauensvollen Grundeinstellung, wie auch dem Vertrauen in Datenschutz und App-Anbieter einher. Wenn man sich in der Lage fühlt, die Dinge zu beherrschen, kann man Anderen offenbar leichter vertrauen. In diesem Fall können also vermutlich alle drei Hypothesen (H7a bis H7c) bestätigt werden.
Reputation und soziales Umfeld

Reputation
Die App sollte gute Bewertungen vorweisen.
Die App sollte in der Rangliste des App-Stores eine vordere Platzierung haben.
Die App sollte einen guten Ruf haben.
Wenn eine App schlechte Bewertungen aufweist, installiere ich sie nicht.
Ich installiere nur Apps, über die ich bereits gutes gehört oder gelesen habe.
Ich orientiere mich an der Seriosität des App-Entwicklers.

<table>
<thead>
<tr>
<th>Soziales Umfeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die App sollte mir persönlich empfohlen worden sein (Freunde, Bekannte).</td>
</tr>
</tbody>
</table>

Abbildung 35: Skalen "Reputation" und "Soziales Umfeld"

Die deskriptiven Auswertungen in Tabelle 29 zeigen, dass den Proband*innen beide Aspekte in etwa gleich wichtig sind (Mittelwerte zwischen 3,38 und 3,67).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>N</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reputation</td>
<td>1,9</td>
<td>4,5</td>
<td>33,7</td>
<td>43,9</td>
<td>16,1</td>
<td>1028</td>
<td>3,67</td>
<td>4,00</td>
</tr>
<tr>
<td>Soziales Umfeld</td>
<td>7,0</td>
<td>11,9</td>
<td>33,3</td>
<td>31,7</td>
<td>16,1</td>
<td>1028</td>
<td>3,38</td>
<td>3,00</td>
</tr>
</tbody>
</table>

Tabelle 29: Reputation und soziales Umfeld in Prozent

Dabei erzielt die Reputation hohe Werte: 60,0 Prozent der Befragten legten auf diesen Aspekt großen (4) bzw. sehr großen Wert (5). Der Einfluss von Freunden und Bekannten (47,8%) ist etwas niedriger.
Reputation Umfeld PEOU PU VERT_disp VERT_inst VERT_inter

Reputation 1 0,392** 0,194** 0,329** 0,058 0,202** 0,242**
Umfeld 0,392** 1 0,01 0,146** 0,083** 0,216** 0,154**

Tabelle 30: Korrelationen in Bezug auf Vertrauen

Die Reputation korreliert sowohl mit der wahrgenommenen Nutzerfreundlichkeit (0,194**) und dem wahrgenommenen Nutzen (0,329**), ebenso wie mit zwei der drei Vertrauensdimensionen (vgl. Tabelle 30). Apps, die ein gutes Image haben und gute Bewertungen in App-Stores erzielen, gelten offenbar als vertrauenswürdig und stärken das Vertrauen in die Institutionen des Datenschutzes (0,202**) sowie die App-Anbieter selbst (0,242**). Ebenso zeigt sich, dass das soziale Umfeld mit dem wahrgenommenen Nutzen (0,146**) wie auch allen drei Dimensionen des Vertrauens (0,083**, 0,216**, 0,154**) korreliert. Werden Apps von Freunden oder Bekannten empfohlen, empfindet man diese ob dieser subjektiven Norm scheinbar eher als nützlich. Zudem wird hierdurch das Vertrauen gestärkt. Die Hypothesen H8a bis H8c können also vermutlich in vollem Umfang bestätigt werden.

Datenschutzsensibilität

Dieses Konstrukt wurde mit sieben Items und einer fünfstufigen Skala gemessen (vgl. Abbildung 37). Der KMO-Wert liegt (bei Weglassung von Item 1) bei 0,788. Dies ist ziemlich gut (bei einer erklärten Varianz von 57,298%). Cronbach’s Alpha ist mit 0,850 ebenfalls gut.

Abbildung 36: Reputation und soziales Umfeld (Angaben in Prozent)
Datenschutz ist mir wichtig.
Ich schränke meine Internet-Nutzung aufgrund von Datenschutzbedenken ein.
Ich schränke meine Smartphone-Nutzung aufgrund von Datenschutzbedenken ein.
Wenn eine App Zugriff auf meine Standortdaten verlangt, verwende ich sie nicht.
Wenn eine App Zugriff auf meine Bilder verlangt, verwende ich sie nicht.
Wenn eine App zu viele Berechtigungen verlangt, installiere ich sie nicht.
Ich habe Bedenken, meine Daten in Apps einzugeben.

Abbildung 37: Skala "Datenschutzsensibilität"

Die Probanden besitzen nach eigener Einschätzung eine mittlere Sensibilität für das Thema Datenschutz (Mittelwert 3,45); bei knapp 73% Prozent der Befragten liegt der additive Index, der aus den sieben Antworten gebildet wurde, bei den Werten 3 (teils/teils) bzw. 4 (trifft eher zu).

<table>
<thead>
<tr>
<th>Geringe Sensibilität (1)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Hohe Sensibilität (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,3</td>
<td>8,9</td>
<td>41,4</td>
<td>31,4</td>
<td>15,0</td>
</tr>
</tbody>
</table>

Tabelle 31: Datenschutzsensibilität (additiver Index) in Prozent

Die Korrelationsanalyse (Tabelle 32) zeigt hier ein gänzlich anderes Bild als bei den zuvor untersuchten Faktoren: Die Datenschutzsensibilität korreliert bei dieser Analyse lediglich mit der wahrgenommenen Nutzerfreundlichkeit signifikant und auch das nur schwach negativ (-0,095**). Mit dem wahrgenommenen Nutzen oder den drei Dimensionen des Vertrauens korreliert sie hingegen überhaupt nicht. Hier zeigt die Analyse lediglich schwache, nicht signifikante Zusammenhänge, welche darin begründet sein könnten, dass sich die meisten der Befragten eher in der Mitte des abgefragten Spektrums einordnen.

<table>
<thead>
<tr>
<th>Datenschutz</th>
<th>PEOU</th>
<th>PU</th>
<th>VERT_disp</th>
<th>VERT_inst</th>
<th>VERT_inter</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0,095**</td>
<td>-0,024</td>
<td>-0,011</td>
<td>0,043</td>
<td>0,026</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 32: Korrelationen in Bezug auf Vertrauen (Ausschnitt der Gesamt-Matrix)

Die Hypothesen H9b und H9c müssen also unter Umständen verworfen werden, während die Hypothese H9a möglicherweise bestätigt werden kann. Es bleibt insgesamt aber abzuwarten, ob mithilfe der Strukturgleichungsmodellierung detailliertere Effekte nachgewiesen werden können.

5.5 Fazit

Einzig die direkte Wirkung der negativen Erfahrungen, der Technikaffinität und der Datenschutzsensibilität auf das Vertrauen konnte im Rahmen der Korrelationsanalyse nicht nachgewiesen werden. In diesem Zusammenhang wäre es dennoch durchaus denkbar, dass eine Wirkung der genannten Faktoren auf das Vertrauen zwar
vorhanden ist, ein anderer Faktor hier aber als Intermediär dient. Derartige indirekte Effekte lassen sich mit einem Strukturgleichungsmodell erfassen und berücksichtigen, das wir im folgenden Kapitel 7 vorstellen werden.

Die deskriptive Analyse in Kapitel 6 belegt nicht nur die meisten von uns vermuteten Zusammenhänge. Sie verdeutlicht zudem, dass die von uns befragten Personen die betreffenden Apps regelmäßig nutzen und eine grundsätzliche Akzeptanz der von diesen Apps präsentierten Handlungsempfehlungen vorhanden ist. Interessant ist in diesem Zusammenhang, dass sich die Befragten dabei eher als technikaffin, denn als technikavers einstufen.

Negative Erfahrungen scheinen dabei (vor allem bei Navigations- und Wetter-Apps) eher selten vorzukommen, was sich gemäß unserer Analyse vor allem auf die wahrgenommene Nutzerfreundlichkeit der Apps positiv auswirkt. Weitere Aufschlüsse über die vermuteten Zusammenhänge und Abhängigkeiten wird das erwähnte Strukturgleichungsmodell im nächsten Kapitel geben.
6 Strukturgleichungsmodell

Für die Analyse der multifaktoriellen Wirkungszusammenhänge in unserem Modell wurde das Verfahren der Strukturgleichungsmodellierung gewählt. Dabei sollte nicht nur ermittelt werden, ob und in welcher Stärke sich die postulierten Zusammenhänge nachweisen lassen, sondern ebenfalls, ob die Positionierung des Vertrauens als intermediärer Faktor im Kern des Modells die erwarteten Vorteile gegenüber einer Betrachtung des Vertrauens als externen Faktor und gegenüber einer Modellierung ohne den Faktor Vertrauen bietet.

6.1 Modellierung und Berechnung

Im Rahmen dieser Strukturgleichungsmodellierung wurde eine Modelldreduction gemäß der in Abbildung 38 angeführten Schritte durchgeführt. Dies bedeutet, dass nach der ersten Modellschätzung insignifikante Zusammenhänge aus der Modellstruktur entfernt wurden und die Schätzungen dann wiederholt wurden, bis ein insgesamt signifikantes Modell übrigblieb.

Weiterhin ist grundsätzlich zur hier verwendeten Methodik der „Analyse kausaler Effekte“ (Weiber und Mühlhaus 2014, S. 233) folgendes anmerken: Die Analyse erfolgte unter Rückgriff auf die standardisierten Regressionskoeffizienten, um so möglichen Abweichungen, welche durch verschiedene Skalierungen entstehen könnten, aus dem Weg zu gehen. Die ermittelten Effekte wurden in vier Signifikanzniveaus unterteilt: 10%, 5%, 1%, 0,1%. Diese Niveaus geben Aufschluss darüber, wie wahrscheinlich eine statistische Signifikanz der jeweils nachgewiesenen Zusammenhänge ist.

Zudem wurde eine Unterscheidung vorgenommen, ob die errechneten Regressionsgewichte den Wert von 0,1 überschreiten. Demnach wurden nur jene Zusammenhänge mit einem Regressionsgewicht größer gleich 0,1 als bedeutungsvoll und für die Bestätigung der Hypothesen als wirksam erachtet. Dabei wird im Grundsatz der von Weiber und Mühlhaus angesprochenen Empfehlung von Chin gefolgt (vgl. Weiber und Mühlhaus 2014, S. 235; Chin 1998, S. 8). Allerdings verwenden wir einen niedrigeren Schwellenwert (Chin schlägt 0,2 vor), um der hohen Anzahl der

Faktoren und Zusammenhänge in unserem Modell Rechnung zu tragen, da eine Anzahl an Komponenten zwangsläufig zu einer gewissen Absenkung der einzelnen Regressionsgewichte führt.

6.2 Variante 1: Vertrauen als intermediärer Faktor

Das Strukturgleichungsmodell mit Vertrauen als intermediärem Faktor zeigte bei unserer Analyse die größte Anzahl bestätigter Zusammenhänge: So zeigt sich, dass innerhalb dieser Modellschätzung für alle Faktoren, mit Ausnahme der Smartphone-Erfahrung und des sozialen Umfelds, signifikante und bedeutungsvolle Zusammenhänge nachgewiesen werden konnten. Wie lange Nutzer*innen bereits Smartphones nutzen, scheint also keinen Einfluss darauf zu haben, wie sehr sie ihren Apps vertrauen und geneigt sind, Handlungsempfehlungen zu folgen. Ebenso scheint es keine große Rolle zu spielen, ob sie diese Apps von Freunden und Bekannten empfohlen bekommen haben.

Zentrale TAM-Varialben

Hinsichtlich der Bereitschaft zur Verhaltensänderung (BV) zeigt sich, dass das interpersonale Vertrauen (Vert_ANB 0,168**) und der wahrgenommene Nutzen (PU 0,222**) einen signifikanten Einfluss haben, während bei der wahrgenommenen
Nutzerfreundlichkeit (PEOU) der vermutete Einfluss nicht nachgewiesen werden konnte. Dem institutionellen Vertrauen kann zudem ein indirekter Einfluss (Vert_DAT 0,118) auf die Bereitschaft zur Verhaltensänderung nachgewiesen werden. Dies meint, dass nicht nur zwischen den Faktoren selbst ein Wirkungszusammenhang besteht, sondern das institutionelle Vertrauen zusätzlich über intermediäre Variablen, welche auf einem möglichen Pfad liegen, auf die Bereitschaft zur Verhaltensänderung wirkt. Betrachtet man das Pfadmodell in Abbildung 39, so kommen in diesem Fall das interpersonale Vertrauen und der wahrgenommene Nutzen als Intermediär in Frage.

Wir können somit empirisch bestätigen, dass es für die Bereitschaft der Nutzer*innen, ihr Verhalten aufgrund einer App-generierten Handlungsempfehlung zu ändern, entscheidend ist, wie sehr sie dem Anbieter dieser App vertrauen und wie nützlich sie die jeweilige App finden. Die Hypothesen H1b und H2a werden somit angenommen, die Hypothese H1a hingegen abgelehnt.

Dieser wahrgenommene Nutzen wird wiederum maßgeblich von der wahrgenommenen Nutzerfreundlichkeit (PEOU) beeinflusst, welche einen signifikant starken Einfluss (0,342**) auf ihn zeigt. Nutzer*innen finden ihre Apps demnach deutlich nützlicher, je mehr ihnen die Funktionsweise dieser App klar erscheint und je leichter ihnen die Bedienung fällt. Die Hypothese H1c kann also bestätigt werden.

Ebenso zeigt das interpersonale Vertrauen (Vert_ANB 0,198**) einen signifikanten Einfluss auf den wahrgenommenen Nutzen. Dem institutionellen Vertrauen (Vert_DAT) kann hier sowohl ein direkter Einfluss (0,099**) als auch ein indirekter Einfluss (0,090) nachgewiesen werden, sodass die Kombination dieser Einflüsse sie bedeutsam werden lässt. Zusätzlich ist dem dispositionalen Vertrauen (Vertr_allg) ein indirekter Einfluss (0,109) auf den wahrgenommenen Nutzen nachzuweisen.

Vertrauen

Wie sich im Rahmen der Analyse zeigt, wird das Vertrauen von einigen der untersuchten Faktoren beeinflusst. Hierzu ist zu erwähnen, dass wir das dispositionale Vertrauen (Vert_allg) dabei als externen Faktor modelliert haben, da wir davon ausgehen, dass diese Komponente des Vertrauens den Nutzer*innen inhärent ist und nicht von weiteren Faktoren beeinflusst wird. Deshalb wurden eingehende Einflüsse nur für das institutionelle und interpersonale Vertrauen untersucht, während ausgehende Einflüsse für alle drei Dimensionen erfasst wurden. Die Daten belegen, dass die drei Dimensionen eng miteinander verknüpft sind: So übt das dispositionale Vertrauen (Vert_allg) einen Einfluss auf das institutionelle Vertrauen (Vertr_DAT 0,356***) und auf das interpersonale Vertrauen (Vert_ANB 0,212***) aus. Das institutionelle Vertrauen wirkt wiederum selbst auf das interpersonale Vertrauen (0,454***) . Diese Ergebnisse bestätigen das dreidimensionale Vertrauenskonzept im Sinne McKnights und Chervanys (vgl. 2001, S. 33) empirisch.
Im originalen TAM-Modell übt die wahrgenommene Nutzerfreundlichkeit (PEOU) einen Einfluss auf den wahrgenommenen Nutzen (PU) aus, der in unserem erweiterten Modell durch den Faktor Vertrauen vermittelt wird. Die Strukturgleichungsmodellierung zeigt jedoch keinen entscheidenden Einfluss der Nutzerfreundlichkeit auf das institutionelle und interpersonale Vertrauen. Hypothese H2c ist demnach abzulehnen.

Externe Faktoren

Variante 1 unseres Modells zufolge beeinflussen die externen Faktoren die Bereitschaft zur Verhaltensänderung nicht direkt, sondern wirken über das Vertrauen als intermediären Faktor.

Wichtige Variablen sind Erfahrungen mit Apps im Sinne der Nutzungshäufigkeit und negativer Erlebnisse. Für die Nutzungshäufigkeit (AN) zeigt sich, dass diese einen bedeutsamen direkten Einfluss (0,109***) auf den wahrgenommenen Nutzen (PU) hat, welcher durch einen indirekten Einfluss (0,046) verstärkt wird. Auf die wahrgenommene Nutzerfreundlichkeit (PEOU) und das Vertrauen lassen sich hingegen keine bedeutsamen Einflüsse feststellen. Nutzer*innen finden ihre Apps folglich umso nützlicher, je häufiger sie diese nutzen, wobei hier natürlich argumentiert werden könnte, dass diese häufige Nutzung ebenso im wahrgenommenen Nutzen begründet liegen könnte. Hypothese H3b wird somit angenommen, während H3a und H3c verworfen werden.

Den negativen Erlebnissen (NE) kann wiederum nur ein starker negativer Einfluss auf die wahrgenommene Nutzerfreundlichkeit (PEOU -0,343***) sowie ein indirekter Einfluss (-0,108) auf den wahrgenommenen Nutzen (PU) nachgewiesen werden. Ein Einfluss auf das Vertrauen zeigt sich nicht. Negative Erlebnisse führen also dazu, dass Nutzer*innen ihre Apps umständlicher in der Bedienung finden. Dies führt dann im Sinne des Pfadmodells dazu, dass sich dies in beachtlichem Maße indirekt auch auf den wahrgenommenen Nutzen auswirkt. Die Hypothesen H4a und H4b werden folglich angenommen, während H4c verworfen wird.

Der Technikaffinität (TA) können bedeutsame direkte (und indirekte) Einflüsse auf die wahrgenommene Nutzerfreundlichkeit (0,225***) und den wahrgenommenen Nutzen (0,073* / 0,058) nachgewiesen werden. Auf das Vertrauen zeigt sich hierbei kein entscheidender Einfluss. Technikaffinen Menschen fällt die Bedienung von Apps demnach leichter und sie empfinden diese Apps ebenso als nützlicher. Beide Einflüsse erscheinen durchaus intuitiv. Die Hypothesen H5a und H5b werden demnach angenommen, H5c wird abgelehnt.

Hinsichtlich der internen Kontrollüberzeugungen (Kint) wird deutlich, dass diese einen bedeutsamen Einfluss auf die wahrgenommene Nutzerfreundlichkeit (0,115***) und den wahrgenommenen Nutzen (0,073* / 0,068) haben, das Vertrauen aber nicht in signifikantem Maße beeinflussen. Menschen, die überzeugt sind, ihr Leben und das Gelingen ihrer Vorhaben selbst in der Hand zu haben, empfinden Apps demnach als nutzerfreundlicher und nützlicher. Die Hypothesen H6a und H6b werden somit angenommen, H6c abgelehnt.
Dieses Bild lässt sich nicht auf die externen Kontrollüberzeugungen (Kext) übertragen. Hier können bedeutsame negative Einflüsse auf den wahrgenommenen Nutzen (-0,087 / -0,046) sowie auf das institutionelle (-0,204*** / -0,004) und das interpersonal (-0,202*** / -0,069) Vertrauen festgestellt werden. Die wahrgenommene Nutzerfreundlichkeit ist nicht betroffen. Menschen, die sich überwiegend fremdgesteuert fühlen, haben demnach vor allem weniger Vertrauen in den institutionellen Datenschutz und die Anbieter ihrer Apps. Dies schlägt sich dann wiederum in einem geringeren wahrgenommenen Nutzen der App selbst nieder, wie anhand des indirekten Effektes auf diesen sichtbar wird. Die Hypothesen H6e und H6f können demnach angenommen werden, während H6d abzulehnen ist.

Der Faktor Kompetenzerwartungen (KOMP) zeigt bedeutsame Einflüsse sowohl auf die wahrgenommene Nutzerfreundlichkeit (0,196*** als auch auf den wahrgenommenen Nutzen (0,062 / 0,097), sowie das institutionelle (0,152*** / -0,014) und interpersonal (0,062 / 0,074) Vertrauen. Menschen, die sich selbst eine größere Kompetenz zuschreiben, empfinden Apps demnach in höherem Maße als nutzerfreundlich als andere. Hierdurch steigt zugleich auch der wahrgenommene Nutzen. Ebenso vertrauen Menschen mit höheren Kompetenzerwartungen sowohl dem Datenschutz als auch den Anbietern ihrer App eher, was damit verbunden sein könnte, dass diese Menschen sich angesichts ihrer empfundenen Kompetenz ebenso in der Lage sehen, die Güte des Datenschutzes und die Vertrauenswürdigkeit der Anbieter besser einzuschätzen. Die Hypothesen H7a, H7b und H7c können demnach alle angenommen werden.

Auch die Reputation von Apps (REP) zeigt bedeutsame Einflüsse auf die wahrgenommene Nutzerfreundlichkeit (0,118***), den wahrgenommenen Nutzen (0,162*** / 0,096), sowie das institutionelle (0,150*** / -0,008) und das interpersonal (0,156*** / 0,066) Vertrauen. Hat eine App einen guten Ruf und weist im jeweiligen Appstore gute Bewertungen auf, führt dies offenbar nicht nur dazu, dass Nutzer*innen ihr mehr vertrauen. Darüber hinaus scheinen die Nutzer*innen sie dann ebenso als nutzerfreundlicher und nützlicher zu empfinden. All diese Einflüsse können möglicherweise auf das Vorhandensein einer gewissen sozialen Norm zurückgeführt werden: So liegt es nahe, dass Nutzer*innen diese Wahrnehmungen gegenüber einer App haben, während sie davon ausgehen, dass es vielen anderen Menschen ähnlich geht. Die Hypothesen H8a, H8b und H8c können somit angenommen werden.

Der letzte untersuchte externe Einflussfaktor, die Datenschutzensensibilität (DAT), zeigt im Rahmen der Strukturgleichungsmodellierung lediglich einen bedeutsamen Einfluss auf die wahrgenommene Nutzerfreundlichkeit (-0,140***). Einflüsse auf den wahrgenommenen Nutzen sind zwar vorhanden, fallen jedoch schwach aus. Demnach empfinden Menschen mit einer höheren Datenschutzensensibilität Apps als weniger nutzerfreundlich, dies wirkt sich jedoch nicht maßgeblich darauf aus, wie nützlich sie diese App finden oder wie sehr sie dem jeweiligen Anbieter vertrauen. Die Hypothese H9a wird demnach angenommen, während H9b und H9c abzulehnen sind.
6.3 Variante 2: Vertrauen als externer Faktor

Wie bereits am Anfang dieses Kapitels erwähnt wurde, haben wir insgesamt drei verschiedene Modellschätzungen durchgeführt, um die Qualität unseres Modells im Vergleich zu klassischen Modellierungsansätzen, welche ausschließlich auf dem TAM basieren, zu prüfen.

Die in Abbildung 40 gezeigte Modellschätzung enthält Vertrauen als externen Faktor. Wie auf den ersten Blick ersichtlich wird, können im Rahmen dieser Schätzung deutlich weniger Zusammenhänge bestätigt werden, als dies bei Variante 1 der Fall ist: So sind mit Hilfe dieser Schätzung lediglich sieben Faktoren bedeutsame Einflüsse nachzuweisen, während unsere Basisvariante 13 bedeutsame Faktoren zeigt. Demnach ist in dieser Variante beispielsweise dem dispositionalen Vertrauen (Vert_allg) keinerlei signifikante Wirkung nachzuweisen. Auch die Datenschutzsensibilität (DAT) und das institutionelle Vertrauen (Vert_DAT) zeigen hier keine entscheidenden Einflüsse, ebenso wenig wie die internen und externen Kontrollüberzeugungen (Kint/Kext) und die Nutzungshäufigkeit von Apps (AN).

Es wird daher ersichtlich, dass ein Modell, welches Vertrauen nur als externen Faktor abbildet, deutlich weniger in der Lage ist, die von uns nachgewiesenen Zusammenhänge zu erklären.
6.4 Variante 3: Ohne Vertrauen

Ähnlich verhält es sich mit einer Modellschätzung, welche den Faktor Vertrauen überhaupt nicht enthält (vgl. Abbildung 41). Auch hier können der Nutzungshäufigkeit von Apps (AN), den internen Kontrollüberzeugungen (Kint) und der Datenschutzsensibilität (DAT) keine bedeutsamen Einflüsse nachgewiesen werden, während unsere Variante 1, die Vertrauen als intermediäre Variable enthält, dies zu leisten vermag.

Unsere Modellvariante bietet ein reichhaltigeres Bild, das eine Vielzahl von Zusammenhängen abbildet und – inhaltlich plausibel – erklärt, welche in Modell-Variante 3 entfallen.

6.5 Validierung und Zusammenfassung

Innerhalb dieses Vergleichs wird schnell ersichtlich, dass Variante 1, welche Vertrauen als intermediären Faktor enthält, nicht nur die meisten Zusammenhänge erklärt, sondern ebenso durchweg die besten Fit-Werte bei sämtlichen geprüften Gütemaßen aufweist, während die Varianten 2 und 3 mit einigem Abstand folgen. Hierbei ist ebenfalls auffällig, dass Variante 2, welche das Vertrauen als externen Faktor enthält, den Fit-Werten nach immer noch besser zu passen scheint als die dritte Variante (ohne Vertrauen). Demnach betrachten wir es als gesichert, dass Vertrauen...
eine zentrale Rolle bei der Frage nach Einflüssen auf die Bereitschaft zur Verhaltensänderung spielt und die von uns präferierte Variante 1 auch modelltheoretisch einen validen Nachweis der ermittelten Zusammenhänge darstellt.

Tabelle 34 zeigt einen abschließenden Überblick über die zuvor aufgestellten Hypothesen und die Ergebnisse ihrer Überprüfung. Dabei werden zu jedem untersuchten Zusammenhang sowohl die Ergebnisse der Korrelationsanalyse als auch die Ergebnisse der Strukturgleichungsmodellierung präsentiert.

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>Soll12</th>
<th>Variante 1</th>
<th>Variante 2</th>
<th>Variante 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enthaltene Faktoren</td>
<td>-</td>
<td>16</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Bestätigte Faktoren</td>
<td>-</td>
<td>13</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>RMSEA</td>
<td>≤ 0,06</td>
<td>0,044</td>
<td>0,078</td>
<td>0,078</td>
</tr>
<tr>
<td>χ^2/d.f.</td>
<td>≤ 3</td>
<td>3,021</td>
<td>7,231</td>
<td>7,236</td>
</tr>
<tr>
<td>SRMR</td>
<td>≤ 0,10</td>
<td>0,0253</td>
<td>0,0330</td>
<td>0,0327</td>
</tr>
<tr>
<td>AGFI</td>
<td>≥ 0,90</td>
<td>0,952</td>
<td>0,913</td>
<td>0,901</td>
</tr>
<tr>
<td>NFI</td>
<td>≥ 0,90</td>
<td>0,982</td>
<td>0,973</td>
<td>0,976</td>
</tr>
<tr>
<td>TU</td>
<td>≥ 0,90</td>
<td>0,946</td>
<td>0,856</td>
<td>0,853</td>
</tr>
<tr>
<td>CFI</td>
<td>≥ 0,90</td>
<td>0,987</td>
<td>0,976</td>
<td>0,979</td>
</tr>
</tbody>
</table>

Tabelle 33: Vergleich der Gütekriterien der einzelnen Schätzungen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Konstrukt</th>
<th>vermutete Wirkung</th>
<th>Konstrukt</th>
<th>Korrelation</th>
<th>SGM direkt / indirekt</th>
<th>Final bestätigt</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1a</td>
<td>Wahrgenommene Nutzerfreundlichkeit (PEOU)</td>
<td>positiv</td>
<td>Bereitschaft zur Verhaltensänderung</td>
<td>0,099**</td>
<td>- / 0,085</td>
<td>nein</td>
</tr>
<tr>
<td>H1b</td>
<td>Wahrgenommener Nutzen (PU)</td>
<td>positiv</td>
<td>Bereitschaft zur Verhaltensänderung</td>
<td>0,224**</td>
<td>0,222*** / -</td>
<td>ja</td>
</tr>
<tr>
<td>H1c</td>
<td>PEOU</td>
<td>positiv</td>
<td>PU</td>
<td>0,479**</td>
<td>0,342*** / 0,003</td>
<td>ja</td>
</tr>
<tr>
<td>H2a</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>positiv</td>
<td>Bereitschaft zur Verhaltensänderung</td>
<td>0,085**</td>
<td>- / 0,087</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,133**</td>
<td>- / 0,118</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,195**</td>
<td>0,168*** / 0,044</td>
<td>ja</td>
</tr>
<tr>
<td>H2b</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>positiv</td>
<td>PU</td>
<td>0,178**</td>
<td>- / 0,109</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,273**</td>
<td>0,099** / 0,090</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,346**</td>
<td>0,198*** / -</td>
<td>ja</td>
</tr>
<tr>
<td>H2c</td>
<td>PEOU</td>
<td>positiv</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>0,088**</td>
<td>- / -</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,082**</td>
<td>-0,065* / -</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,186**</td>
<td>0,078** / -</td>
<td>nein</td>
</tr>
<tr>
<td>H3a</td>
<td>Nutzungshäufigkeit (AN)</td>
<td>positiv</td>
<td>PEOU</td>
<td>0,062**</td>
<td>0,083*** / -</td>
<td>nein</td>
</tr>
<tr>
<td>H3b</td>
<td></td>
<td>positiv</td>
<td>PU</td>
<td>0,223**</td>
<td>0,109*** / 0,046</td>
<td>ja</td>
</tr>
<tr>
<td>H3c</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>positiv</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>0,115**</td>
<td>- / -</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,162**</td>
<td>- / 0,022</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,167**</td>
<td>- / 0,014</td>
<td>nein</td>
</tr>
<tr>
<td>H4a</td>
<td>Negative Erfahrungen (alle) (NE)</td>
<td>negativ</td>
<td>PEOU</td>
<td>-0,327**</td>
<td>-0,343*** / -</td>
<td>ja</td>
</tr>
<tr>
<td>H4b</td>
<td></td>
<td>negativ</td>
<td>PU</td>
<td>-0,088*</td>
<td>- / -0,108</td>
<td>ja</td>
</tr>
<tr>
<td>H4c</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>negativ</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>-0,004</td>
<td>- / -</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,108**</td>
<td>- / 0,022</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,052</td>
<td>- / -0,14</td>
<td>nein</td>
</tr>
<tr>
<td>H5a</td>
<td>Technikaffinität (TA)</td>
<td>positiv</td>
<td>PEOU</td>
<td>0,331**</td>
<td>0,225*** / -</td>
<td>ja</td>
</tr>
<tr>
<td>H5b</td>
<td></td>
<td>positiv</td>
<td>PU</td>
<td>0,284**</td>
<td>0,126*** / 0,068</td>
<td>ja</td>
</tr>
<tr>
<td>H5c</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>positiv</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>-0,035</td>
<td>- / -</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0,024</td>
<td>- / -0,14</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,016</td>
<td>- / 0,009</td>
<td>nein</td>
</tr>
<tr>
<td>H6a</td>
<td>Interne Kontrolle (Kint)</td>
<td>positiv</td>
<td>PEOU</td>
<td>0,331**</td>
<td>0,115*** / -</td>
<td>ja</td>
</tr>
<tr>
<td>H6b</td>
<td></td>
<td>positiv</td>
<td>PU</td>
<td>0,348**</td>
<td>0,073* / 0,058</td>
<td>ja</td>
</tr>
<tr>
<td>H6c</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>positiv</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>0,099**</td>
<td>- / -</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,146**</td>
<td>- / -0,099</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,200**</td>
<td>0,078** / 0,005</td>
<td>nein</td>
</tr>
<tr>
<td>H6d</td>
<td>Externe Kontrolle (Kext)</td>
<td>negativ</td>
<td>PEOU</td>
<td>0,331**</td>
<td>0,064* / -</td>
<td>nein</td>
</tr>
<tr>
<td>H6e</td>
<td></td>
<td>negativ</td>
<td>PU</td>
<td>0,348**</td>
<td>-0,087 /-0,046</td>
<td>ja</td>
</tr>
<tr>
<td>H6f</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>negativ</td>
<td>Vertrauen (dispositional, institutionell, interpersonal)</td>
<td>0,099**</td>
<td>- / -</td>
<td>nein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,146**</td>
<td>- / -0,204***</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,200**</td>
<td>- / -0,202***</td>
<td>ja</td>
</tr>
<tr>
<td>Nr.</td>
<td>Konstrukt</td>
<td>vermutete Wirkung</td>
<td>Konstrukt</td>
<td>Korrelation</td>
<td>SGM direkt / indirekt</td>
<td>Final bestätigt</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>H7a</td>
<td>Kompetenzerwartungen (KOMP)</td>
<td>positiv</td>
<td>PEOU</td>
<td>0,389**</td>
<td>0,196*** / -</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PU</td>
<td>0,342**</td>
<td>0,062 / 0,097</td>
<td>ja</td>
</tr>
<tr>
<td>H7b</td>
<td></td>
<td></td>
<td>Vertrauen (dispositional, institutionell, interperso-nal)</td>
<td>0,144**</td>
<td>- / -</td>
<td>0,152*** / -0,014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vertrauen (dispositional, institutionell, interperso-nal)</td>
<td>0,155**</td>
<td>- / -</td>
<td>0,152*** / -0,014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vertrauen (dispositional, institutionell, interperso-nal)</td>
<td>0,233**</td>
<td>- / -</td>
<td>0,152*** / -0,014</td>
</tr>
<tr>
<td>H7c</td>
<td></td>
<td></td>
<td>Vertrauen (dispositional, institutionell, interperso-nal)</td>
<td>- / -</td>
<td>0,152*** / -0,014</td>
<td>0,062 / 0,074</td>
</tr>
<tr>
<td>H8a</td>
<td>Reputation (REP)</td>
<td>positiv</td>
<td>PEOU</td>
<td>0,194**</td>
<td>0,118*** / -</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PU</td>
<td>0,329**</td>
<td>0,162*** / 0,096</td>
<td>ja</td>
</tr>
<tr>
<td>H8b</td>
<td></td>
<td></td>
<td>Vertrauen (dispositional, institutionell, interperso-nal)</td>
<td>0,083**</td>
<td>- / -</td>
<td>0,150*** / -0,008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vertrauen (dispositional, institutionell, interperso-nal)</td>
<td>0,216**</td>
<td>- / -</td>
<td>0,150*** / -0,008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vertrauen (dispositional, institutionell, interperso-nal)</td>
<td>0,154**</td>
<td>- / -</td>
<td>0,150*** / -0,008</td>
</tr>
<tr>
<td>H8c</td>
<td></td>
<td></td>
<td>Vertrauen (dispositional, institutionell, interperso-nal)</td>
<td>- / -</td>
<td>0,150*** / -0,008</td>
<td>0,156*** / 0,066</td>
</tr>
<tr>
<td>H9a</td>
<td>Datenschutzsensibilität (DAT)</td>
<td>negativ</td>
<td>PEOU</td>
<td>-0,095**</td>
<td>-0,140*** / -</td>
<td>ja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PU</td>
<td>-0,024</td>
<td>- / -0,060</td>
<td>nein</td>
</tr>
<tr>
<td>H9b</td>
<td></td>
<td></td>
<td>Vertrauen (dispositional, institutionell, interperso-nal)</td>
<td>- / -</td>
<td>0,011</td>
<td>-0,017** / 0,008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vertrauen (dispositional, institutionell, interperso-nal)</td>
<td>0,042</td>
<td>- / -</td>
<td>0,011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vertrauen (dispositional, institutionell, interperso-nal)</td>
<td>0,026</td>
<td>- / -</td>
<td>0,042</td>
</tr>
</tbody>
</table>

Tabelle 34: Abschließender Überblick über die Hypothesen
7 Fazit

Die vorliegende Studie ist der Frage nachgegangen, wie groß die Bereitschaft von Nutzer*innen ist, ihr Verhalten aufgrund von Hinweisen und Empfehlungen ihrer Smartphone-Apps zu verändern. Diese Fragestellung ist im Kontext des ABIDA-Projekts insofern relevant, als der Output algorithmischer Verarbeitung großer Datenmengen in der Regel aus einer Handlungsempfehlung besteht. Navigations-Apps schlagen beispielsweise ihren Nutzer*innen vor der Fahrt vor, eine bestimmte Route zu wählen, und geben Hinweise, wenn es aufgrund aktueller Ereignisse (z.B. Stau) angesagt ist, die Route zu wechseln. Gesundheits-Apps erinnern daran, sich mehr zu bewegen oder weniger Kalorien zu sich zu nehmen. Und Wetter-Apps unterstützen bei der Entscheidung, ob es eventuell sinnvoll sein könnte, beim Verlassen des Hauses einen Regenschirm mitzunehmen. Viele dieser Prozesse, insbesondere im Fall der Routenplanung, geschehen in Echtzeit, d.h. der Nutzer*in bleibt wenig Zeit, sich ein eigenes Bild der Lage zu verschaffen und, darauf basierend, eine Entscheidung zu treffen.\(^{13}\)

Ohne Vertrauen – so unsere These – wird Big Data nicht funktionieren; denn Apps, denen die Nutzer*innen nicht vertrauen, sind nutzlos, wenn sie lediglich auf dem Smartphone installiert sind, aber ihre Empfehlungen ignoriert werden. Wir haben diese Fragestellung mithilfe einer empirischen Studie untersucht, bei der 1028 Personen befragt wurden. Gegenstand waren die am häufigsten genutzten App-Typen, und zwar in den Bereichen Gesundheit, Routenplanung und Wetter.

7.1 Das erweiterte TAM-Modell

\(^{13}\) Dies ist ein Thema der Vertiefungsstudie „Echtzeitsteuerung komplexer Systeme“. 71
liefernten somit wichtige Hinweise für unsere eigene Untersuchung; es wurde jedoch auch deutlich, dass die von uns verfolgte Fragestellung nach der Rolle des Vertrauens im Big-Data-Prozess noch nicht hinreichend untersucht worden ist.

7.2 Deskriptive Analyse

Auch die Bereitschaft zur Verhaltensänderung ist unterschiedlich ausgeprägt: Sie ist bei Navigations- und Wetter-Apps am größten, bei Sport- und Gesundheits-Apps am geringsten. 78,1 Prozent der Befragten würden wahrscheinlich oder sogar sicher ihre Route vor Fahrtantritt ändern, wenn das Navigationsgerät eine entsprechende Empfehlung ausgibt; während der Fahrt sind dies noch 69,6 Prozent. Einer Empfehlung der Wetter-App würden sogar 80,4 Prozent Folge leisten; bei Sport- und Gesundheits-Apps hingegen nur 52,3 bzw. 43,8 Prozent.

Neben der Frage nach der Rolle von Vertrauen richtete sich das Augenmerk unserer Untersuchung auf die externen Faktoren, die das Vertrauen, aber auch die beiden
klassischen TAM-Variablen (PEOU und PU) beeinflussen. Zudem ging es uns darum zu zeigen, dass die indirekten Wirkungen dieser externen Faktoren, vermittelt über die Variable „Vertrauen“, höher sind als deren direkten Wirkungen auf die Akzeptanz, wie es das Standard-TAM behauptet.

Wie die Daten zeigen, schätzen sich die Befragten eher als technikaffin (44,6 Prozent) denn als technikavers (12,8 Prozent) ein. Sie sind zu großen Teilen (77,1 Prozent) überzeugt, dass sie eine hohe interne Kontrolle besitzen, also den Lauf der Dinge durch eigene Entscheidungen beeinflussen können. Ähnlich hoch sind ihre Kompetenzserwartungen (77,8 Prozent), also die Einschätzung ihrer Fähigkeit, Probleme meistern zu können. Bei der Entscheidung für die Installation und Nutzung einer App spielen deren Reputation (60,0 Prozent) sowie die Empfehlung des sozialen Umfelds, also von Freunden und Bekannten, eine Rolle (47,8 Prozent). Die Datenschutzsensibilität ist eher schwach ausgeprägt (46,4 Prozent); ein großer Teil der Befragten hat dazu keine Meinung, was sich in 41,4 Prozent ausdrückt, die „teils/teils“ angekreuzt haben.

7.3 Analyse der Einflussfaktoren

Mithilfe eines Strukturgleichungsmodells sind wir den vermuteten Zusammenhängen zwischen den unterschiedlichen Variablen nachgegangen, wobei uns vor allem interessiert hat, welche Rolle der Faktor „Vertrauen“ als intermediäre Variable im TAM-Modell spielt und wie stark die von uns identifizierten acht externen Einflussfaktoren die zentralen TAM-Variablen (PEOU und PU), aber auch das Vertrauen beeinflussen.

Um dieser Fragestellung nachzugehen, haben wir drei Varianten des Strukturgleichungsmodells getestet, die sich darin unterschieden, dass

- Vertrauen als intermediäre Variable gleichberechtigt mit wahrgenommener Nutzerfreundlichkeit (PEOU) und wahrgenommenem Nutzen (PU) zentral im TAM-Modell positioniert wird (Variante 1),
- Vertrauen als ein zusätzlicher externer Faktor angesehen wird, der lediglich die beiden Zentralvariablen PEOU und PU beeinflusst (Variante 2),
- Vertrauen keine Rolle spielt, also aus dem Modell entfernt wird und die externen Einflussfaktoren direkt auf PEOU und PU wirken (Variante 3).

Die Berechnungen in Kapitel 7 haben gezeigt, dass die beiden Varianten 2 und 3 wesentlich schlechtere Werte liefern und nicht in der Lage sind, die Zusammenhänge abzubilden und zu erklären, die Variante 1 darstellen kann.

Zentral-Variablen des TAM-Modells

Unsere Analysen bestätigen das klassische TAM-Modell nur zum Teil. Der wahrgenommene Nutzen (PU) einer App hat einen deutlich positiven Einfluss auf die Bereitschaft zur Verhaltensänderung (BV); bei der wahrgenommenen Nutzerfreundlichkeit (PEOU) ist dies hingegen nicht der Fall. In gewisser Weise ist dies intuitiv: Eine gute Bedienbarkeit einer App reicht, für sich genommen, nicht aus, um bei der Nutzer*in etwas zu bewirken; es muss schon ein konkreter Nutzen erkennbar sein,
etwa in Form einer kürzeren Route, einer Gewichtsreduktion etc. Unsere Analysen bestätigen allerdings – wie auch im klassischen TAM-Modell – einen indirekten Einfluss von PEOU auf PU. Auch dies erscheint plausibel: Eine nutzerfreundliche App wird eher als nützlich betrachtet als eine schwer zu bedienende.

Vertrauen als intermediäre Variable

Die Vermutung, dass die wahrgenommene Nutzerfreundlichkeit (PEOU) einer App das Vertrauen stärkt, konnte hingegen nicht belegt werden. Wir hatten vermutet, dass eine schlecht zu bedienende, schwer zu durchschauende App wenig vertrauenswürdig erscheint (und umgekehrt), können diesen Zusammenhang aber aus unseren Daten nicht herauslesen.

Allerdings konnten wir nachweisen, dass die drei Vertrauens-Dimensionen eng zusammenhängen (d.h. statistisch signifikant korrelieren), was die Nützlichkeit dieses Konstrukts von McKnight/Chervany bestätigt.

Externe Faktoren und TAM-Variablen

Die Datenschutzsensibilität korreliert signifikant negativ nur mit PEOU. Menschen, die Sorge um ihre Daten haben, werden einer App mit mehr Skepsis gegenüber treten und sie als weniger nutzerfreundlich empfinden. Selbst wenn sie einen Nutzen hätte – so könnte man spekulieren – wären die Datenschutzbedenken höher als der mögliche Benefit, der sich aus der Nutzung ergibt.
Interessanterweise korreliert die Nutzungshäufigkeit nur signifikant positiv mit PU, nicht aber mit PEOU. Wer eine App häufiger nutzt, wird ihren Nutzen tendenziell höher einschätzen, nicht aber ihre Bedienbarkeit. Das ist in gewisser Weise überraschend, spricht es doch gegen einen Gewöhnungseffekt.

Externe Kontrollüberzeugungen korrelieren signifikant negativ nur mit PU, nicht aber mit PEOU, was insofern nachvollziehbar ist, als die wahrgenommene Nutzen einer App sinkt, wenn man davon überzeugt ist, die Dinge nicht selbst unter Kontrolle zu haben, sondern anderen Akteuren ausgeliefert zu sein. Mit der Nutzerfreundlichkeit hat dies hingegen nichts zu tun.

Externe Faktoren und Vertrauen als intermediäre Variable

In allen drei Fällen gilt dieser Zusammenhang allerdings nur für das interpersonale Vertrauen (in App-Anbieter) sowie das institutionelle Vertrauen (in den Datenschutz), nicht aber für das dispositionelle Vertrauen, also die eigene Bereitschaft, anderen in der Regel zu vertrauen. Dies ist insofern plausibel, als die externen Faktoren in erster Linie das Vertrauen in andere beeinflussen, nicht aber das Vertrauen in sich selbst. Dieses ist den Nutzer*innen bereits gegeben und wirkt seinerseits wiederum auf die übrigen Vertrauensdimensionen.

Andere externe Faktoren beeinflussen das Vertrauen hingegen nicht, was in einigen Punkten durchaus überraschend ist, etwa im Fall der Nutzungshäufigkeit und der negativen Erfahrungen. Vor dem Hintergrund des Standes der Forschung (vgl. Kap. 3) hätte man hier andere Ergebnisse erwartet. Es gibt, was das Vertrauen anbetrifft, offenbar weder einen Gewöhnungseffekt (durch häufige Nutzung), noch einen Abschreckungseffekt (durch negative Erlebnisse). Bei Letzterem muss berücksichtigt werden, dass nur wenige Personen überhaupt negative Erfahrungen gemacht hatten. Dennoch bleiben diese Erfahrungen nicht vollständig folgenlos: Sie wirken sich maßgeblich auf die wahrgenommene Nutzerfreundlichkeit (negative Erfahrungen) und den wahrgenommenen Nutzen (häufige Nutzung) aus.

Auch die Technikaffinität spielt überraschenderweise keine bedeutsame Rolle für das Vertrauen. Offenbar handelt es sich um zwei Dinge, die nichts miteinander zu tun haben. Eine Person kann technikaffin (oder technikavers) sein und vertrauen bzw. nicht vertrauen. Zur Erinnerung: Technikaffinität ist eine einflussreiche Variable in unserem Modell; aber einen Zusammenhang zum Vertrauen gibt es nicht.

Auch die internen Kontrollüberzeugungen korrelieren nicht mit dem Vertrauen, was in gewisser Weise plausibel erscheint, da Vertrauen ja immer den Verzicht auf Kontrolle und die Delegation der Verantwortung an Dritte beinhaltet. Das Vertrauen in
Apps, das ja durchaus vorhanden ist, wird offenbar nicht durch die internen, wohl aber negativ durch die externen Kontrollüberzeugungen beeinflusst.

Schließlich überrascht, dass die Datenschutzsensibilität, die in unserem Sample allerdings wenig ausgeprägt war, nicht mit dem Vertrauen korreliert. Der negative Zusammenhang, den wir unter Bezug auf den Stand der Forschung, aber auch die öffentliche Datenschutz-Debatte postuliert hatten, lässt sich aus den Daten nicht able- sen.

Gesamt-Resümee

Die Ausgangsfragen, mit denen wir unsere Studie begonnen haben, können wir nunmehr wie folgt beantworten:

- Das Vertrauen, das Nutzer*innen ihren Apps entgegenbringen, ist ebenso hoch wie deren Bereitschaft, ihr Verhalten aufgrund von Hinweisen und Empfehlungen dieser Apps zu verändern.
- Das Vertrauen in Apps spielt eine zentrale Rolle bei der Bereitschaft von Nutzer*innen zur Verhaltensänderung.
- Das Vertrauen in Apps wird nur von einigen externen Variablen beeinflusst, ist aber dennoch ein wichtiger Faktor, dessen Platzierung als intermediäre Variable im Modell zu wesentlich besseren Ergebnissen führt.

7.4 Handlungsempfehlungen für Politik, Gesellschaft und Daten-Wirtschaft

Die Studie hat einige „Stellschrauben“ identifiziert, die alle am Big-Data-Prozess beteiligten Akteure im Blick behalten sollten. Die Reputation von Produkten, aber auch von Anbietern trägt entscheidend dazu bei, dass Nutzer*innen Vertrauen entwickeln. Wichtig wäre also, Mechanismen zu schaffen bzw. auszubauen (etwa unabhängige Institutionen wie die Stiftung Warentest), die Reputation verteilen, garantieren und absichern. Dies wäre eine staatliche Aufgabe.

Ein gesundes Selbstbewusstsein (Faktor „Kompetenzerwartung“) und der Glaube, Probleme selbst erfolgreich lösen zu können, fördert hingegen das Vertrauen in Apps. Dies verweist auf die häufigen bereits diskutierten Aspekte „Medienkompetenz“ und „computer literacy“, die offenkundig wichtige Faktoren sind, die man nicht vernachlässigen sollte, wenn es darum geht, Vertrauen im Big-Data-Prozess aufzubauen und zu bewahren. Dieser Punkt spricht alle Bereiche von Politik, Gesellschaft und Wirtschaft an.

Andere Aspekte wie Technikaffinität oder Datenschutzsensibilität, die oftmals im Zentrum öffentlicher Debatten stehen, spielen unseren Analysen zufolge nicht die prominente Rolle, die ihnen oftmals zugeschrieben wird. Dies ist in einigen Punkten überraschend, regt aber dazu an, den Fokus der Debatte über Big Data möglicherweise nicht zu eng zu führen, sondern andere, bislang zu wenig berücksichtigte Aspekte stärker einzubeziehen.

Die zentrale Erkenntnis unserer Studie lautet: Ohne ein Mindestmaß an Vertrauen, das alle am Big-Data-Prozess Beteiligten wechselseitig aufbringen, wird die Daten-gesellschaft auf Dauer nicht funktionieren. Neben den technischen, ökonomischen, regulatorischen, datenschutzrechtlichen etc. Dimensionen sollte auch dieser Dimension die gebührende Aufmerksamkeit geschenkt werden.
Literaturverzeichnis

Buller, David B.; Berwick, Marianne; Lantz, Kathy; Buller, Mary Klein; Shane, James; Kane, Ilima; Liu, Xia (2015): Evaluation of immediate and 12-week effects of a smartphone sun-safety mobile application: a randomized clinical trial. In: *JAMA dermatology* 151 (5), S. 505–512. DOI: 10.1001/jamadermatol.2014.3894.

Choocharukul, Kasem (2008): Effects of Attitudes and Socioeconomic and Travel Characteristics on Stated Route Diversion. In: Transportation Research Record: Journal of the Transportation Research Board 2048 (1), S. 35–42. DOI: 10.3141/2048-05.

Cock, Nathalie de; Vangeel, Jolien; Lachat, Carl; Beullens, Kathleen; Vervoort, Leentje; Goossens, Lien et al. (2017): Use of Fitness and Nutrition Apps: Associations With Body Mass Index, Snacking, and Drinking Habits in Adolescents. In: JMIR mHealth and uHealth 5 (4), e58. DOI: 10.2196/mhealth.6005.

Direito, Artur; Jiang, Yannan; Whittaker, Robyn; Maddison, Ralph (2015): Apps for Improving FITness and Increasing Physical Activity Among Young People: The AIMFIT Pragmatic Randomized Controlled Trial. In: Journal of Medical Internet Research 17 (8), e210. DOI: 10.2196/jmir.4568.

Karrer, Katja; Glaser, Charlotte; Clemens, Caroline; Bruder, Carmen (2009): Technikaffinität erfassen – der Fragebogen TA-EG.

Kramer, Ursula; Lucht, Martin (2013): GESUNDHEITS- UND VERSORGUNGS- APPS. Hintergründe zu deren Entwicklung und Einsatz. Freiburg: Studienzentrum des Universitätsklinikums Freiburg. Online verfügbar unter https://www.uniklinik-

Mattila, Elina; Orsama, Anna-Leena; Ahtinen, Aino; Hopsu, Leila; Leino, Timo; Korhonen, Ilkka (2013): Personal health technologies in employee health promotion: usage activity, usefulness, and health-related outcomes in a 1-year randomized controlled trial. In: *JMIR mHealth and uHealth* 1 (2), e16. DOI: 10.2196/mhealth.2557.

Miller, Lisa; Schüz, Benjamin; Walters, Julia; Walters, E. Haydn (2017): Mobile Technology Interventions for Asthma Self-Management: Systematic Review and Meta-Analysis. In: *JMIR mHealth and uHealth* 5 (5), e57. DOI: 10.2196/mhealth.7168.

Weyer, Johannes; Delisle, Marc; Kappler, Karolin; Kiehl, Marcel; Merz, Christina; Schrape, Jan-Felix (2018): Big Data in soziologischer Perspektive. In: Barbara Kolany-Raiser, Reinhard Heil, Carsten Orwat und Thomas Hoeren (Hg.): Big Data und Gesellschaft. Eine multidisziplinäre Annäherung. Wiesbaden: Springer